Refine Your Search

Topic

Search Results

Journal Article

An Improved Human Biodynamic Model Considering the Interaction between Feet and Ground

2015-04-14
2015-01-0612
Nowadays, studying the human body response in a seated position has attracted a lot of attention as environmental vibrations are transferred to the human body through floor and seat. This research has constructed a multi-body biodynamic human model with 17 degrees of freedom (DOF), including the backrest support and the interaction between feet and ground. Three types of human biodynamic models are taken into consideration: the first model doesn't include the interaction between the feet and floor, the second considers the feet and floor interaction by using a high stiffness spring, the third one includes the interaction by using a soft spring. Based on the whole vehicle model, the excitation to human body through feet and back can be obtained by ride simulation. The simulation results indicate that the interaction between feet and ground exerts non-negligible effect upon the performance of the whole body vibration by comparing the three cases.
Technical Paper

Determination of Magic Formula Tyre Model Parameters Using Homotopy Optimization Approach

2020-04-14
2020-01-0763
Tyre behavior plays an important role in vehicle dynamics simulation. The Magic Formula Tyre Model is a semi-empirical tyre model which describes tyre behavior quite accurately in the handling simulation. The Magic Formula Tyre Model needs a set of parameters to describe the tyre properties; the determination of these parameters is nontrivial task due to its nonlinear nature and the presence of a large number of coefficients. In this paper, the homotopy algorithm is applied to the parameter identification of Magic Formula tyre model. A morphing parameter is introduced to correct the optimization process; as a result, the solution is directed converging to the global optimal solution, avoiding the local convergence. The method uses different continuation methods to globally optimize the parameters, which ensures that the prediction of the Magic Formula model can be very close to the test data at all stages of the optimization process.
Technical Paper

The Effect of Friction on Ride Comfort Simulation and Suspension Optimization

2020-04-14
2020-01-0765
The design of suspension affects the vehicle dynamics such as ride comfort and handling stability. Nonlinear characteristics and friction are important characteristics of suspension system, and the influence on vehicle dynamic performance cannot be ignored. Based on the seven-degree-of-freedom vehicle vibration nonlinear model with friction, the vibration response process of the vehicle and the influence of suspension friction on vehicle ride comfort and suspension action process were studied. The results show that friction will significantly affects the simulation of ride comfort and coincide with the function of the shock absorber. The suspension shock absorbers of vehicles were optimized with and without suspension friction. The results showed that the suspension tended to choose softer shock absorbers when there was friction. However, both of the two optimizations are able to improve the ride comfort of vehicles, and the simulation results were similar.
Technical Paper

Synthesis and Analysis of the Double-Axle Steering Mechanism Considering Dynamic Loads

2008-04-14
2008-01-1105
This paper investigates a hierarchical optimization procedure for the optimum synthesis of a double-axle steering mechanism by considering the dynamic load of a vehicle which is seldom discussed in the previous literature. Firstly, a multi-body model of double-axle steering is presented by characterizing the detailed leaf spring effect. Accordingly, the influences of dynamic load including the motion interference of steering linkage resulted from the elastic deformation of leaf spring, and the effects of wheel slip angle and the position discrepancy of wheel speed rotation centers are explored systematically. And then, a hierarchical optimization method based on target cascading methodology is proposed to classify the design variables of double-axle steering mechanism into four levels. At last, a double-axle steering mechanism of a heavy-duty truck is utilized to demonstrate the validity of this method.
Technical Paper

A Fuzzy Synthesis Control Strategy for Active Four-Wheel Steering Based on Multi-Body Models

2008-04-14
2008-01-0603
Active steering systems can help the driver to master critical driving situations. This paper presents a fuzzy logic control strategy on active steering vehicle based on a multi-body vehicle dynamic model. The multi-body vehicle dynamic model using ADAMS can accurately predict the dynamic performance of the vehicle. A new hybrid steering scheme including both active front steering (applying an additional front steering angle besides the driver input) and rear steering is presented to control both yaw velocity and sideslip angle. A set of fuzzy logic rules is designed for the active steering controller, and the fuzzy controller can adjust both sideslip angle and yaw velocity through the co-simulation between ADAMS and the Matlab fuzzy control unit with the optimized membership function. To ensure the design of high-quality fuzzy control rules, a rule optimization strategy is introduced.
Technical Paper

Numerical Solution of Stochastic Differential Equations with Application to Vehicle Handling

2010-04-12
2010-01-0912
To solve the dynamic response problem that contains uncertain parameters needs, the stochastic differential equations needs to be calculated. Interval analysis has been widely used to solve engineering problems which contain many uncertain parameters usually. But the numerical solution method for stochastic differential equations based on the interval analysis method was seldom investigated. In this study a new numerical interval method for the stochastic differential equations based on the Euler's method is presented, which can be used to solve the linear system effectively and efficiently. The probabilistic and interval dynamics analysis of a two-degree-of-freedom bike car model with uncertain parameters are presented.
Technical Paper

Parameter Sensitivity Analysis of a Light Duty Truck Steering Returnability Performance

2017-03-28
2017-01-0428
Steering returnability is an important index for evaluating vehicle handling performance. A systematic method is presented in this paper to reduce the high yaw rate residue and the steering response time for a light duty truck in the steering return test. The vehicle multibody model is established in ADAMS, which takes into consideration of the frictional loss torque and hydraulically assisted steering property in the steering mechanism, since the friction, which exists in steering column, spherical joint, steering universal joint, and steering gear, plays an important role in vehicle returnability performance. The accuracy of the vehicle model is validated by road test and the key parameters are determined by executing the sensitivity analysis, which shows the effect of each design parameter upon returnability performance.
Technical Paper

Multi-domain Modeling and Simulation of AMT Based on Modelica

2011-04-12
2011-01-1237
The automatic mechanical transmission (AMT) was designed by automobile manufacturers to provide a better driving experience, especially in cities where congestion frequently causes stop-and-go traffic patterns. It uses electronic sensors, processors, hydraulic or pneumatic actuators execute clutch actuation and gear shifts on the command of the driver. Such systems coupled with various physical domains have great influence on the dynamic behavior of the vehicle, such as shift quality, driveability, acceleration, etc. This paper presents a detailed AMT model composed of various components from multi-domains like mechanical systems (clutch, gear pair, synchronizer, etc.), pneumatic actuator systems (clutch actuation system, gear select actuation system, gear shift actuation system, etc.). Various components and subsystem models, such as the vehicle, engine, AMT, wheels, etc., are integrated into an overall vehicle system model according to the transmission power flow and control logic.
Technical Paper

Robust Design Optimization of an Shock Absorber for Enhancing Ride Performance

2013-04-08
2013-01-0995
There are many uncertain parameters in shock absorbers, which are induced by the manufacturing error, the wear of components and the aging of materials in real vehicle environment. These uncertainties often cause some deterioration of vehicle performance. To optimize the ride characteristic of a vehicle when the shock absorber includes uncertain parameters, the robust design method is used. In this paper, a Twin Tube shock absorber fluid system model has established on the multi-domain modeling environment. This model not only includes the commonly used parameters of the shock absorber but also takes into account the structure parameters of various valves in the shock absorber, which is more detailed and accurate than those models in the past literature. The robust design of the shock absorber parameters is successfully approached using the co-simulation technique, and the ride comfort performance of the vehicle is also improved.
Technical Paper

Robust Design for Vehicle Ride Comfort and Handling with Multi-Objective Evolutionary Algorithm

2013-04-08
2013-01-0415
As is known to all, there are some contradictions between the handling and ride performance during the design process of vehicles. Sometimes owing to serious collisions of each criterion in the high-dimensional solution space, the common method to deal with the contradiction is to transform into a single target according to weights of each objective, which may not obtain a desired result. A multi-criteria approach is therefore adopted to optimize both properties and the result of a multi-criteria design is not a unique one but a series of balanced solutions. This paper is focused on the robust design of a simplified vehicle model in terms of not only ride comfort but also handling and stability using a multi-objective evolutionary algorithm (MOEA) method. Using the proposed method, the conflicting performance requirements can be better traded off. One of the most important indexes to characterize the vertical ride comfort is the acceleration of the sprung mass.
Technical Paper

Automated Vehicle Path Planning and Trajectory Tracking Control Based on Unscented Kalman Filter Vehicle State Observer

2021-04-06
2021-01-0337
For automated driving vehicles, path planning and trajectory tracking are the core of achieving obstacle avoidance. Real-time external environment perception and vehicle state monitoring play the important role in the decision-making of vehicle operation. Sensor measuring is an important way to obtain vehicle state parameters, but some parameters cannot be measured due to sensor cost or technical reasons, such as vehicle lateral velocity and side-slip angle. This disadvantage will adversely affect the monitoring of vehicle self-condition and the control of vehicle running, even it will lead to erroneous decision-making of vehicles. Therefore, this paper proposes an automated driving path planning and trajectory tracking control method based on Kalman filter vehicle state observer. Some of vehicle state data can be measured accurately by sensors.
Technical Paper

Local Path Planning and Tracking Control Considering Tire Cornering Stiffness Uncertainty

2021-04-06
2021-01-0339
In autonomous driving, variations in tire vertical load, tire slip angle, road conditions, tire pressure and tire friction all contribute to uncertainty in tire cornering stiffness. Even the same tire may vary slightly during the manufacturing process. Therefore, the uncertainty of tire cornering stiffness has an important influence for autonomous driving path planning and control strategies. In this paper, the Chebyshev interval method is used to represent the uncertainty of tire cornering stiffness and is combined with a model predictive control algorithm to obtain the trajectory interval bands under local path planning and tracking control. The accuracy of the tire cornering stiffness model and the path tracking efficiency are verified by comparing with the path planning and control results without considering the corner stiffness uncertainties.
Technical Paper

Neural-Network-Based Suspension Kinematics and Compliance Characteristics and Its Implementation in Full Vehicle Dynamics Model

2022-03-29
2022-01-0287
Suspension kinematics and compliance strongly influence the handling performance of the vehicle. The kinematics and compliance characteristics are determined by the suspension geometry and stiffness of suspension bodies and elastic components. However, it is usually inefficient to model all the joints, bushings, and linkage deformation in a full vehicle model. By transforming the complex modeling problem into a data-driven problem tends to be a good solution. In this research, the neural-network-based suspension kinematics and compliance model is built and implemented into a 17 DOF full vehicle model, which is a hybrid model with state variables expressed in the global coordinate system and vehicle coordinate system. The original kinematics and compliance characteristics are derived from multibody dynamics simulation of the suspension system level.
Technical Paper

A Multibody Model for Riderless Bicycle Dynamics Considering Tire Characteristics

2023-04-11
2023-01-0783
A multibody model for riderless bicycle dynamics considering tire characteristics is presented. A riderless bicycle is regarded as a multibody system consisting of four rigid bodies: rear wheel, frame, front fork, and front wheel. Every two bodies are connected with a revolute joint. The mass center coordinates and Euler angles of the rigid bodies are used as the generalized coordinates to describe their positions and orientations. The system equations of motion are obtained using Lagrange equations of the first kind. Due to the existence of the three revolute constraints and the use of dependent generalized coordinates, the Lagrange multipliers are employed to account for revolute reaction forces. As for the contact between the wheel and the ground, many studies regarded the wheel as a rigid body with a knife edge, which lead to the nonholonomic constraints between the wheel and the ground.
Technical Paper

Study on the Torque Distribution of Wheel-Track Hybrid Drive Vehicles during Pass Shoreline

2023-04-11
2023-01-0784
To study the torque distribution of track and tire in the wheel-track hybrid drive vehicle driving along the shoreline, an analysis model of wheel-track hybrid drive vehicle was established by using multi-body dynamics (MBD), discrete element (DEM), and shoreline pavement construction methods. The vehicle speed, acceleration, torque, vertical load, sinkage, slip, and other indicators when the vehicle passes the shoal at different wheel speed of rotation are analyzed. The relationships between wheel speed of rotation and slip, sinkage and slip, and vertical load and driving moment were studied, and the laws that the sinkage of tires and tracks is positively related to their slippage and the driving moment of wheels and tracks is positively related to their vertical load were obtained.
Technical Paper

Study on Vibration Reduction Technology for Transportation of TEG Dehydration Unit Regeneration Module

2021-04-06
2021-01-0334
In the petroleum and gas industry, cargo truck is one of the most important ways to transfer the skid-mounting from the manufacturer to the job location. Under the condition of bumpy road surface, the random vibration from the ground can easily cause the resonance of the internal equipment components of the skid-mounting, produce large deformation in the pipeline and equipment connection, and even the equipment will be damaged. In this paper, the finite element analysis model and dynamic rigid flexible coupling model of a TEG (Triethyleneglycol) dehydration unit regeneration skid-mounting are established by using the finite element analysis and multi-body dynamics software. The modal analysis of the skid and the vibration of the whole vehicle under different road excitation and driving conditions are carried out. Two solutions are proposed to improve the anti-vibration ability of the skid, and comparative analysis is made.
Technical Paper

Multi-objective Optimization of the PMS Based on Non-dominated Sorting Genetic Algorithm II

2015-04-14
2015-01-1675
In order to reasonably match the variable stiffness and location of the Powertrain Mounting System (PMS) and optimize the ride comfort of commercial vehicle, a thirteen degrees of freedom (DOF) model of a commercial vehicle was established in Adams/view. Specially, the support rod installed on the upside of the transmission case was modeled as a flexible body. The vibration isolation provided by the PMS was evaluated in three aspects: the energy decoupling of the powertrain, the response force of the mount and the displacement of the powertrain. The energy decoupling ratio, the force RMS of the mount when force excitation was applied on the powertrain and the displacement of the powertrain Center of Gravity (C.G) when displacement excitation was applied on the vehicle chassis were selected as the optimal target. Adams and MATLAB were integrated into the optimization software iSIGHT to optimize the PMS. NSGA-II is used to obtain some Pareto-optimal solutions of PMS.
Technical Paper

Vehicle Handling Dynamics with Uncertainty Using Chebyshev Interval Method

2014-04-01
2014-01-0720
Vehicle systems often operate with some degree of uncertainty. This study applies the Chebyshev interval method to model vehicle dynamic systems operating in the presence of interval parameters. A full vehicle model is used as the numerical model and the methodology is illustrated on the steering wheel angle pulse input test. In the numerical simulation, suspension stiffness coefficients and suspension damping coefficients are chosen as interval parameters and lateral acceleration and yaw rate are chosen to capture vehicle dynamic characteristics. System responses in time domain are validated against Monte Carlo simulations and against the scanning approach. Results indicate that the Chebyshev interval method is more efficient than Monte Carlo simulations. The results of scanning method are similar to the ones obtained with the Chebyshev interval method.
Technical Paper

Hanger Location Design and Vibration Isolation of an Exhaust System

2014-04-01
2014-01-1708
In the present study, the research of the exhaust system is performed in three steps. In the first step, the average driving degree of freedom displacement (ADDOFD) is calculated by the free modal analysis of the exhaust system. It is easy to find the reasonable location of the hanger according to the value of the ADDOFD, since it represents the relative size of some DOF's response displacement at excitation state. The second of which is to analyse the vibration isolation performance of the exhaust system based on the first step. The dynamic analysis of the exhaust system together with the powertrain is studied, by which way the unit sinusoidal excitation is applied at the powertrain's mass centre, so that the response force at the hanger can be obtained. Finally, the relationship between the constrained model of the exhaust system and the stiffness of the hanger is investigated, which is significant in engineering.
Technical Paper

Recursive Estimation of Vehicle Inertial Parameters Using Polynomial Chaos Theory via Vehicle Handling Model

2015-04-14
2015-01-0433
A new recursive method is presented for real-time estimating the inertia parameters of a vehicle using the well-known Two-Degree-of- Freedom (2DOF) bicycle car model. The parameter estimation is built on the framework of polynomial chaos theory and maximum likelihood estimation. Then the most likely value of both the mass and yaw mass moment of inertia can be obtained based on the numerical simulations of yaw velocity by Newton method. To improve the estimation accuracy, the Newton method is modified by employing the acceptance probability to escape from the local minima during the estimation process. The results of the simulation study suggest that the proposed method can provide quick convergence speed and accurate outputs together with less sensitivity to tuning the initial values of the unidentified parameters.
X