Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Direct Osmotic Concentration System for Spacecraft Wastewater Recycling

2007-07-09
2007-01-3035
Direct osmotic concentration (DOC) is a membrane treatment process for reclamation of space craft wastewater. It incorporates a novel system architecture that includes a forward osmosis (FO) and reverse osmosis (RO) subsystem for hygiene (gray) water, and a membrane distillation subsystem for the treatment of urine and humidity condensate. The products of these subsystems are combined and then post-treated by a catalytic oxidation subsystem. This paper documents progress made during the second year of a three year Rapid Technology Development Team (RTDT) effort.
Technical Paper

Initial Engineering Model Development for Sulfate Reducing Bacteria Colonization Potential Related to Forward Contamination and Ecosynthesis

2008-06-29
2008-01-1981
This research is intended to provide contamination and ecosynthesis researchers with an engineering development tool for understanding the productivity of metabolically active low temperature brine habitats as potential sites for bacterial colonization by forward contaminating Earth organisms. The specific extremophile microbial culturing conditions targeted were psychrophilic (low temperature), halophilic (high salt), high ambient sulfur, and anaerobic. These low temperature or freezing point suppressed brine habitats with high ambient sulfur concentrations have been suggested as potential subsurface water resources on both Mars and Europa, and may be common among potentially viable extant water environments in the outer solar system.
Technical Paper

Advanced Development of the Direct Osmotic Concentration System

2008-06-29
2008-01-2145
Direct osmotic concentration (DOC) is an integrated membrane treatment process designed for the reclamation of spacecraft wastewater. The system includes forward osmosis (FO), membrane evaporation, reverse osmosis (RO) and an aqueous phase catalytic oxidation (APCO) post-treatment unit. This document describes progress in the third year of a four year project to advance hardware maturity of this technology to a level appropriate for human rated testing. The current status of construction and testing of the final deliverable is covered and preliminary calculations of equivalent system mass are funished.
Technical Paper

Direct Osmotic Concentration: A Primary Water Treatment Process for Space Life Support Applications

2003-07-07
2003-01-2332
For wastewater treatment applications, membrane processes are known to provide excellent treatment but are subject to failure due to membrane fouling. The Direct Osmotic Concentration (DOC) system evaluated in this study provides a membrane based primary treatment process capable of overcoming this problem. A full scale test apparatus containing full scale test module membrane cells has been developed and has undergone preliminary testing that provides a basis for comparison with other primary water recycle process concepts. This study confirms and extends the initial testing of this hardware and determines the required improvements to the existing test mo dules. These improvements, in addition to future testing, are intended to complete the validation of the concept and mature the hardware to the point that human rated test equipment design and development can be based directly on the test module derived data.
Technical Paper

New Concepts and Performance of the Direct Osmotic Concentration Process for Wastewater Recovery in Advanced Life Support Systems

2006-07-17
2006-01-2086
Direct osmotic concentration (DOC) has been identified as a potential wastewater treatment process for potable reuse in advanced life support systems (ALSS). As a result, further development of the DOC process is being supported by a NASA Rapid Technology Development Team (RTDT) program. DOC is an integrated membrane system combining three unique membrane separation processes including forward osmosis (FO), membrane distillation (MD), and reverse osmosis (RO) that is designed to treat separate wastewater streams comprising hygiene wastewater, humidity condensate, and urine. An aqueous phase catalytic oxidation (APCO) process is incorporated as post treatment for the product water. In an ongoing effort to improve the DOC process and make it fully autonomous, further development of the three membrane technologies is being pursued.
Technical Paper

Proof of Concept Testing of Low Temperature Brine Microbial Habitats for Subsurface Mars and Europa Habitat Viability Scenario Testing and Astrobiology Biosignature Instrument Development

2006-07-17
2006-01-2008
Presented is a synopsis of ongoing research into the development of techniques and hardware required to produce useable quantities of astrobiology relevant biomass under controlled and repeatable laboratory conditions. This study has developed microbial habitats (referred to as digesters, due to their biomass production function) capable of sustaining microbial communities under low temperature, high salt, high sulfate, anaerobic conditions. This set of basic conditions is necessary to develop biomass material that is analog to the biomass that would be present in subsurface brine habitats on Mars or Europa, from the perspective of several critical biochemical properties.
Technical Paper

Progress in the Development of Direct Osmotic Concentration Wastewater Recovery Process for Advanced Life Support Systems

2005-07-11
2005-01-3031
Direct osmotic concentration (DOC) has been identified as a potential technology for recycling of wastewater to drinking water in advanced life support (ALS) systems. As a result the DOC process has been selected for a NASA Rapid Technology Development Team (RTDT) effort. The current project focuses on advancing the development of this technology to a level appropriate for human rated testing. A new prototype of a DOC system is been designed and fabricated that addresses the deficiencies encountered during the testing of the original system and able to achieve a long-term and reliable operation. Background information is provided about the technologies investigated and their capabilities, results from preliminary tests, and the milestones plan and activities for the RTDT program intended to develop a second generation prototype of the DOC system.
X