Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

ERRATUM

2017-09-17
2017-01-2520.1
This is a errata for 2017-01-2520.
Journal Article

Safe and Secure Software Updates Over The Air for Electronic Brake Control Systems

2016-09-18
2016-01-1145
Vehicle manufacturers are suffering from increasing expenses for fixing software issues. This fact is mainly driving their desire to use mobile communication channels for doing Software Updates Over The Air (SOTA). Software updates today are typically done at vehicle service stations by connecting the vehicles’ electronic network via the On Board Diagnostic (OBD) interface to a service computer. These operations are done under the control of trained technicians. SOTA means that the update process must get handled by the driver. Two critical aspects need to get considered when doing SOTA at Electronic Brake Control (EBC) systems. Both will determine the acceptance of SOTA by legal authorities and by the passengers: The safety and security of the vehicle The availability of the vehicle for the passengers The security aspect includes the necessity to protect the vehicle and the manufacturers IP from unwanted attacks.
Technical Paper

A Comprehensive Review of Pedestrian Impact Reconstruction

1987-02-01
2014-01-2828
This paper presents a review on pedestrian impact reconstruction methodology and offers a comprehensive review of the literature. Several types of analyses are discussed which can be used to reconstruct the accident scenario using the facts collected from the scene. Inclusive in this review is the utilization of skid mark analysis, debris analysis, injury/damage match-up, trajectory analysis, nighttime visibility, and alcohol effects. The pedestrian impact reconstruction methodology is illustrated with a real world case example to point out different observations which can provide insight into the pedestrian/vehicle collision reconstruction approach. The literature review provides a broad foundation of information on pedestrian impact reconstruction and can be used to supplement the techniques presented in this paper in areas related to pedestrian impact. Research advances in the area of pedestrian impact reconstruction are also discussed in this paper.
Journal Article

Review of Prior Studies of Fuel Effects on Vehicle Emissions

2009-04-20
2009-01-1181
A literature review was conducted to survey recent research on the effects of fuel properties on exhaust emissions from gasoline and diesel vehicles, on-road and off-road. Most of the literature has been published in SAE papers, although data have also been reported in other journals and government reports. A full report and database are available from the Coordinating Research Council (www.crcao.org). The review identified areas of agreement and disagreement in the literature and evaluated the adequacy of experimental design and analysis of results. Areas where additional research would be helpful in defining fuel effects are also identified. In many of the research programs carried out to evaluate the effect of new blendstocks, the fuel components were splash blended in fully formulated fuels. This approach makes it extremely difficult to determine the exact cause of the emissions benefit or debit.
Journal Article

Properties of Partial-Flow and Coarse Pore Deep Bed Filters Proposed to Reduce Particle Emission of Vehicle Engines

2009-04-20
2009-01-1087
Four of these Particulate Reduction Systems (PMS) were tested on a passenger car and one of them on a HDV. Expectation of the research team was that they would reach at least a PM-reduction of 30% under all realistic operating conditions. The standard German filter test procedure for PMS was performed but moreover, the response to various operating conditions was tested including worst case situations. Besides the legislated CO, NOx and PM exhaust-gas emissions, also the particle count and NO2 were measured. The best filtration efficiency with one PMS was indeed 63%. However, under critical but realistic conditions filtration of 3 of 4 PMS was measured substantially lower than the expected 30 %, depending on operating conditions and prior history, and could even completely fail. Scatter between repeated cycles was very large and results were not reproducible. Even worse, with all 4 PMS deposited soot, stored in these systems during light load operation was intermittently blown-off.
Journal Article

Using LES for Predicting High Performance Car Airbox Flow

2009-04-20
2009-01-1151
Aerodynamic had played a primary role in high performance car since the late 1960s, when introduction of the first inverted wings appeared in some formulas. Race car aerodynamic optimisation is one of the most important reason behind the car performance. Moreover, for high performance car using naturally aspired engine, car aerodynamic has a strong influence also on engine performance by its influence on the engine airbox. To improve engine performance, a detailed fluid dynamic analysis of the car/airbox interaction is highly recommended. To design an airbox geometry, a wide range of aspects must be considered because its geometry influences both car chassis design and whole car aerodynamic efficiency. To study the unsteady fluid dynamic phenomena inside an airbox, numerical approach could be considered as the best way to reach a complete integration between chassis, car aerodynamic design, and airbox design.
Journal Article

Ethyl Tertiary Butyl Ether - A Review of the Technical Literature

2009-06-15
2009-01-1951
Ethyl tertiary butyl ether (ETBE) has been used as a high octane blending component since the early 1990's. However the strong interest in renewable energy has led to a dramatic increase in its use. This has also resulted in a substantial number of technical studies being carried out around the world to assess its performance with respect to vehicle performance, distribution system compatibility, environmental impact and toxicology. The purpose of this paper is to provide a comprehensive, up to date review of these data. Particular focus will be given to its positive impact on CO2 emissions.
Journal Article

Comparative Configurations for Lunar Lander Habitation Volumes: 2005-2008

2009-07-12
2009-01-2366
This paper presents an overview of the progression of the contemplated candidate volumes for the Lunar Lander since the beginning of the Vision for Space Exploration in 2004. These sets of data encompass the 2005 Exploration Systems Architecture Study (ESAS), the 2006 Request for Information on the Constellation Lunar Lander, the 2007 Lander Design Analysis Cycle −1 (LDAC-1) and the 2008 Lunar Lander Development Study (LLDS). This data derives from Northrop Grumman Corporation analyses and design research. A key focus of this investigation is how well the lunar lander supports crew productivity.
Journal Article

Minimum Functionality Lunar Habitat Element Design: Requirements and Definition of an Initial Human Establishment on the Moon

2009-07-12
2009-01-2369
This paper summarizes the activities of the University of Maryland Space Systems Laboratory in performing a design study for a minimum functionality lunar habitat element for NASA's Exploration Systems Mission Directorate. By creating and deploying a survey to personnel experienced in Earth analogues, primarily shipboard and Antarctic habitats, a list of critical habitat functions was established, along with their relative importance and their impact on systems design/implementation. Based on a review of relevant past literature and the survey results, four habitat concepts were developed, focused on interior space layout and preliminary systems sizing. Those concepts were then evaluated for habitability through virtual reality (VR) techniques and merged into a single design. Trade studies were conducted on habitat systems, and the final design was synthesized based on all of the results.
Journal Article

Stability Analysis of a Disc Brake with Piezoelectric Self-Sensing Technique

2009-10-11
2009-01-3034
Piezoelectric self-sensing allows to measure frequency response functions of dynamical systems with one single piezoelectric element. This piezoceramics is used as actuator and sensor simultaneously. In this study, a model-based piezoelectric self-sensing technique is presented to obtain potential squealing frequencies of an automotive disc brake. The frequency-response function of the brake system is obtained during operation by measuring the current flowing through the piezoelectric element while the piezoelectric element is driven by a harmonic voltage signal with constant amplitude. The current flow is composed of the part which is required to drive the piezoelectric element as an actuator and a second part which is the sensor signal that is proportional to the vibration amplitude of the attached mechanical system. Typically the first part is dominant and the influence of the mechanical system is marginal.
Journal Article

Effects of Chemical Components and Manufacturing Process of Cast Iron Brake Disc on its Resonant Frequency Variation

2009-10-11
2009-01-3030
Many engineers have been working to reduce brake noise in many ways for a long time. So far, a progress has been made in preventing and predicting brake noise. Nevertheless, there are some discrepancies of brake noise generation propensity between testing for the prototype and the production. As known in general, the reason for this unpredicted brake noise occurrence in production is partly due to the variation of the resonant frequency, material and the other unpredictable or unmanageable variations of the components in a brake system. In this paper, effects of chemical components and casting process of gray iron brake disc on its resonant frequency variation have been studied. Especially this paper is focused on the variation in material aspects and manufacturing parameters during disc casting in usual production condition. And their effects are investigated by the variation of out-of-plane modal resonant frequency.
Journal Article

Systematic Brake Development Process and Optimized Robust Design of Front Axle Kinematics in Order to Reduce Oscillation Sensitivity

2009-10-11
2009-01-3038
Brake judder is about oscillations excited by brake application, which are generated in the contact area between brake pad and brake disc and are transmitted by the elements of the suspension to body and steering system. The driver perceives these perturbations as brake pedal pulsations, steering wheel rotational and body vibrations. The evaluation of a suspension concerning brake judder often takes place for the first time in road tests, since established simulation processes with a high significance concerning ride comfort are missing. At such a late moment necessary modifications in the development process are only hardly possible and very expensive. For avoiding brake judder a systematic development process is needed for brake and suspension. Each one can separately be improved in measurably borders so that their assembly is free of cold brake judder. The present paper shows appropriate test and simulation methods to achieve this.
Journal Article

Genesis of the Third-Body at the Pad-Disc Interface: Case Study Of Sintered Metal Matrix Composite Lining Material

2009-10-11
2009-01-3053
During braking, third-body flows and layers govern friction mechanisms, which are fully responsible of the friction coefficient and wear. In the context of development of brake friction pairs, the involved tribological circuit has to be well understood and mastered. This paper concerns a sintered metal matrix composite used for TGV very high speed train. A series of low-energy stop brakings allows a detailed study of the third-body formation at the pad-disc contact. The pin surface is observed after each test. The evolution of the rubbing-area expansion all along the series is explained, and the friction behaviour, typical of the studied friction material, is related to the formation of a well-established third body at the pad-disc interface.
Journal Article

Brake Timing Measurements for a Tractor-Semitrailer Under Emergency Braking

2009-10-06
2009-01-2918
The timing and associated levels of braking between initial brake pedal application and actual maximum braking at the wheels for a tractor-semitrailer are important parameters in understanding vehicle performance and response. This paper presents detailed brake timing information obtained from full scale instrumented testing of a tractor-semitrailer under various conditions of load and speed. Brake timing at steer, drive and semitrailer brake positions is analyzed for each of the tested conditions. The study further seeks to compare the full scale test data to predicted response from detailed heavy truck computer vehicle dynamics simulation models available in commercial software packages in order to validate the model's brake timing parameters. The brake timing data was collected during several days of full scale instrumented testing of a tractor-semitrailer performed at the Transportation Research Center, in East Liberty, Ohio.
Journal Article

Fast Characterization of Brake Squeal Behavior

2009-10-11
2009-01-3006
The last decades have shown extensive efforts on the investigation of automotive disk brake squeal. The origin of brake squeal is seen in self-excited vibrations, caused by the friction forces transferring energy from the rotating disk into the brake system. Based on a very simple model, Popp et al. described in 2002 the conditions for positive work of the friction forces (i.e. excitation of squeal), which depends on the phase shift between the in-plane motion (with respect to the disk) of the brake pad and the friction forces. Experiments on active manipulation of this phase shift using pads with integrated piezoceramic actuators, performed by von Wagner et al. in 2004, resulted in successful suppression of disk brake squeal. The authors of the present paper used a variety of models for the investigation of the origin of the excitation mechanism by observing phase relations between the friction forces and the vibrations of the pads.
Journal Article

The Influence of Vibration on Friction

2009-10-11
2009-01-3015
This paper summarizes results from the author's work on friction in dry sliding contacts in the presence of vibration. A number of idealized models of smooth and rough contacts are examined. It is shown that vibration can cause up to a 10% reduction in average friction even with continuous contact. A larger reduction in friction occurs when there is intermittent contact loss. This is found to be true for both elastic and plastic contacts, and for adhesive and plowing mechanisms of friction. The results of this work are compared and validated with measurements from experiments. The results presented are fundamental, but applicable to machine components with contacts including brake systems.
Journal Article

The Potential for Fibre Alignment in the Manufacture of Polymer Composites from Recycled Carbon Fibre

2009-11-10
2009-01-3237
This paper studies the feasibility and potential benefits of aligning recycled carbon fibres, in the form of short individual filaments, to manufacture fibre reinforced polymer composites. A review of fibre alignment processes is presented to provide insight into the different alignment technologies. The main focus is on wet hydrodynamic processes, which offer a high degree of alignment for discontinuous fibres. The process parameters that govern the alignment efficiency are also reported. The effect of alignment on fibre packing efficiency in the manufacture of composites is included, together with a report of preliminary fibre alignment results obtained from three different alignment processes.
Journal Article

Characterization of the Tau Parallel Kinematic Machine for Aerospace Application

2009-11-10
2009-01-3222
A consortium of interested parties has conducted an experimental characterization of two Tau parallel kinematic machines which were built as a part of the EU-funded project, SMErobot1. Characteristics such as machine stiffness, work envelope, repeatability and accuracy were considered. This paper will present a brief history of the Tau parallel machine, the results of this testing and some comment on prospective application to the aerospace industry.
Journal Article

Beyond Identification – High Memory RFID in Aviation

2009-11-10
2009-01-3273
The RFID on Parts Project Team has recently completed and approved Spec 2000 Chapter 9, “RFID on Parts”. Once approved by the ATA e-Business Steering Group, this standard will allow for archiving and sharing part history information directly on RFID tags using the User Memory Bank. Using a structure similar to a File Storage System, this standard organizes tag data in a structured and indexed system so that information can be shared among all members of the supply chain. Now that high memory, passive tags are becoming available, when used in conjunction with the “RFID on Parts” standard, they make it possible to tag parts not just with an identification number, but with birth records, a full history of maintenance activities and user archives. Since end users and maintenance organizations will no longer need to rely solely on information retrieved from a centralized database, new processes and efficiencies can be realized.
X