Refine Your Search

Search Results

Journal Article

A Re-Analysis Methodology for System RBDO Using a Trust Region Approach with Local Metamodels

2010-04-12
2010-01-0645
A simulation-based, system reliability-based design optimization (RBDO) method is presented that can handle problems with multiple failure regions and correlated random variables. Copulas are used to represent the correlation. The method uses a Probabilistic Re-Analysis (PRRA) approach in conjunction with a trust-region optimization approach and local metamodels covering each trust region. PRRA calculates very efficiently the system reliability of a design by performing a single Monte Carlo (MC) simulation per trust region. Although PRRA is based on MC simulation, it calculates “smooth” sensitivity derivatives, allowing therefore, the use of a gradient-based optimizer. The PRRA method is based on importance sampling. It provides accurate results, if the support of the sampling PDF contains the support of the joint PDF of the input random variables. The sequential, trust-region optimization approach satisfies this requirement.
Journal Article

A New Metamodeling Approach for Time-Dependent Reliability of Dynamic Systems with Random Parameters Excited by Input Random Processes

2014-04-01
2014-01-0717
We propose a new metamodeling method to characterize the output (response) random process of a dynamic system with random parameters, excited by input random processes. The metamodel can be then used to efficiently estimate the time-dependent reliability of a dynamic system using analytical or simulation-based methods. The metamodel is constructed by decomposing the input random processes using principal components or wavelets and then using a few simulations to estimate the distributions of the decomposition coefficients. A similar decomposition is also performed on the output random process. A kriging model is then established between the input and output decomposition coefficients and subsequently used to quantify the output random process corresponding to a realization of the input random parameters and random processes. What distinguishes our approach from others in metamodeling is that the system input is not deterministic but random.
Journal Article

Reliability and Cost Trade-Off Analysis of a Microgrid

2018-04-03
2018-01-0619
Optimizing the trade-off between reliability and cost of operating a microgrid, including vehicles as both loads and sources, can be a challenge. Optimal energy management is crucial to develop strategies to improve the efficiency and reliability of microgrids, as well as new communication networks to support optimal and reliable operation. Prior approaches modeled the grid using MATLAB, but did not include the detailed physics of loads and sources, and therefore missed the transient effects that are present in real-time operation of a microgrid. This article discusses the implementation of a physics-based detailed microgrid model including a diesel generator, wind turbine, photovoltaic array, and utility. All elements are modeled as sources in Simulink. Various loads are also implemented including an asynchronous motor. We show how a central control algorithm optimizes the microgrid by trying to maximize reliability while reducing operational cost.
Journal Article

Reanalysis of Linear Dynamic Systems using Modified Combined Approximations with Frequency Shifts

2016-04-05
2016-01-1338
Weight reduction is very important in automotive design because of stringent demand on fuel economy. Structural optimization of dynamic systems using finite element (FE) analysis plays an important role in reducing weight while simultaneously delivering a product that meets all functional requirements for durability, crash and NVH. With advancing computer technology, the demand for solving large FE models has grown. Optimization is however costly due to repeated full-order analyses. Reanalysis methods can be used in structural vibrations to reduce the analysis cost from repeated eigenvalue analyses for both deterministic and probabilistic problems. Several reanalysis techniques have been introduced over the years including Parametric Reduced Order Modeling (PROM), Combined Approximations (CA) and the Epsilon algorithm, among others.
Journal Article

Time-Dependent Reliability of Random Dynamic Systems Using Time-Series Modeling and Importance Sampling

2011-04-12
2011-01-0728
Reliability is an important engineering requirement for consistently delivering acceptable product performance through time. As time progresses, the product may fail due to time-dependent operating conditions and material properties, component degradation, etc. The reliability degradation with time may increase the lifecycle cost due to potential warranty costs, repairs and loss of market share. Reliability is the probability that the system will perform its intended function successfully for a specified time interval. In this work, we consider the first-passage reliability which accounts for the first time failure of non-repairable systems. Methods are available in the literature, which provide an upper bound to the true reliability which may overestimate the true value considerably. Monte-Carlo simulations are accurate but computationally expensive.
Journal Article

A Simulation and Optimization Methodology for Reliability of Vehicle Fleets

2011-04-12
2011-01-0725
Understanding reliability is critical in design, maintenance and durability analysis of engineering systems. A reliability simulation methodology is presented in this paper for vehicle fleets using limited data. The method can be used to estimate the reliability of non-repairable as well as repairable systems. It can optimally allocate, based on a target system reliability, individual component reliabilities using a multi-objective optimization algorithm. The algorithm establishes a Pareto front that can be used for optimal tradeoff between reliability and the associated cost. The method uses Monte Carlo simulation to estimate the system failure rate and reliability as a function of time. The probability density functions (PDF) of the time between failures for all components of the system are estimated using either limited data or a user-supplied MTBF (mean time between failures) and its coefficient of variation.
Journal Article

Optimal Preventive Maintenance Schedule Based on Lifecycle Cost and Time-Dependent Reliability

2012-04-16
2012-01-0070
Reliability is an important engineering requirement for consistently delivering acceptable product performance through time. It also affects the scheduling for preventive maintenance. Reliability usually degrades with time increasing therefore, the lifecycle cost due to more frequent failures which result in increased warranty costs, costly repairs and loss of market share. In a lifecycle cost based design, we must account for product quality and preventive maintenance using time-dependent reliability. Quality is a measure of our confidence that the product conforms to specifications as it leaves the factory. For a repairable system, preventive maintenance is scheduled to avoid failures, unnecessary production loss and safety violations. This article proposes a methodology to obtain the optimal scheduling for preventive maintenance using time-dependent reliability principles.
Journal Article

System Topology Identification with Limited Test Data

2012-04-16
2012-01-0064
In this article we present an approach to identify the system topology using simulation for reliability calculations. The system topology provides how all components in a system are functionally connected. Most reliability engineering literature assumes that either the system topology is known and therefore all failure modes can be deduced or if the system topology is not known we are only interested in identifying the dominant failure modes. The authors contend that we should try to extract as much information about the system topology from failure or success information of a system as possible. This will not only identify the dominant failure modes but will also provide an understanding of how the components are functionally connected, allowing for more complicated analyses, if needed. We use an evolutionary approach where system topologies are generated at random and then tested against failure or success data. The topologies evolve based on how consistent they are with test data.
Journal Article

A Nonparametric Bootstrap Approach to Variable-size Local-domain Design Optimization and Computer Model Validation

2012-04-16
2012-01-0226
Design optimization often relies on computational models, which are subjected to a validation process to ensure their accuracy. Because validation of computer models in the entire design space can be costly, a recent approach was proposed where design optimization and model validation were concurrently performed using a sequential approach with both fixed and variable-size local domains. The variable-size approach used parametric distributions such as Gaussian to quantify the variability in test data and model predictions, and a maximum likelihood estimation to calibrate the prediction model. Also, a parametric bootstrap method was used to size each local domain. In this article, we generalize the variable-size approach, by not assuming any distribution such as Gaussian. A nonparametric bootstrap methodology is instead used to size the local domains. We expect its generality to be useful in applications where distributional assumptions are difficult to verify, or not met at all.
Journal Article

Multi-Objective Decision Making under Uncertainty and Incomplete Knowledge of Designer Preferences

2011-04-12
2011-01-1080
Multi-attribute decision making and multi-objective optimization complement each other. Often, while making design decisions involving multiple attributes, a Pareto front is generated using a multi-objective optimizer. The end user then chooses the optimal design from the Pareto front based on his/her preferences. This seemingly simple methodology requires sufficient modification if uncertainty is present. We explore two kinds of uncertainties in this paper: uncertainty in the decision variables which we call inherent design problem (IDP) uncertainty and that in knowledge of the preferences of the decision maker which we refer to as preference assessment (PA) uncertainty. From a purely utility theory perspective a rational decision maker maximizes his or her expected multi attribute utility.
Journal Article

Managing the Computational Cost of Monte Carlo Simulation with Importance Sampling by Considering the Value of Information

2013-04-08
2013-01-0943
Importance Sampling is a popular method for reliability assessment. Although it is significantly more efficient than standard Monte Carlo simulation if a suitable sampling distribution is used, in many design problems it is too expensive. The authors have previously proposed a method to manage the computational cost in standard Monte Carlo simulation that views design as a choice among alternatives with uncertain reliabilities. Information from simulation has value only if it helps the designer make a better choice among the alternatives. This paper extends their method to Importance Sampling. First, the designer estimates the prior probability density functions of the reliabilities of the alternative designs and calculates the expected utility of the choice of the best design. Subsequently, the designer estimates the likelihood function of the probability of failure by performing an initial simulation with Importance Sampling.
Journal Article

A Methodology for Design Decisions using Block Diagrams

2013-04-08
2013-01-0947
Our recent work has shown that representation of systems using a reliability block diagram can be used as a decision making tool. In decision making, we called these block diagrams decision topologies. In this paper, we generalize the results and show that decision topologies can be used to make many engineering decisions and can in fact replace decision analysis for most decisions. We also provide a meta-proof that the proposed method using decision topologies is entirely consistent with decision analysis at the limit. The main advantages of the method are that (1) it provides a visual representation of a decision situation, (2) it can easily model tradeoffs, (3) it can incorporate binary attributes, (4) it can model preferences with limited information, and (5) it can be used in a low-fidelity sense to quickly make a decision.
Journal Article

Warranty Forecasting of Repairable Systems for Different Production Patterns

2017-03-28
2017-01-0209
Warranty forecasting of repairable systems is very important for manufacturers of mass produced systems. It is desired to predict the Expected Number of Failures (ENF) after a censoring time using collected failure data before the censoring time. Moreover, systems may be produced with a defective component resulting in extensive warranty costs even after the defective component is detected and replaced with a new design. In this paper, we present a forecasting method to predict the ENF of a repairable system using observed data which is used to calibrate a Generalized Renewal Processes (GRP) model. Manufacturing of products may exhibit different production patterns with different failure statistics through time. For example, vehicles produced in different months may have different failure intensities because of supply chain differences or different skills of production workers, for example.
Journal Article

Efficient Probabilistic Reanalysis and Optimization of a Discrete Event System

2011-04-12
2011-01-1081
This paper presents a methodology to evaluate and optimize discrete event systems, such as an assembly line or a call center. First, the methodology estimates the performance of a system for a single probability distribution of the inputs. Probabilistic Reanalysis (PRRA) uses this information to evaluate the effect of changes in the system configuration on its performance. PRRA is integrated with a program to optimize the system. The proposed methodology is dramatically more efficient than one requiring a new Monte Carlo simulation each time we change the system. We demonstrate the approach on a drilling center and an electronic parts factory.
Technical Paper

Reliability and Resiliency Definitions for Smart Microgrids Based on Utility Theory

2017-03-28
2017-01-0205
Reliability and resiliency (R&R) definitions differ depending on the system under consideration. Generally, each engineering sector defines relevant R&R metrics pertinent to their system. While this can impede cross-disciplinary engineering projects as well as research, it is a necessary strategy to capture all the relevant system characteristics. This paper highlights the difficulties associated with defining performance of such systems while using smart microgrids as an example. Further, it develops metrics and definitions that are useful in assessing their performance, based on utility theory. A microgrid must not only anticipate load conditions but also tolerate partial failures and remain optimally operating. Many of these failures happen infrequently but unexpectedly and therefore are hard to plan for. We discuss real life failure scenarios and show how the proposed definitions and metrics are beneficial.
Technical Paper

Managing the Computational Cost in a Monte Carlo Simulation by Considering the Value of Information

2012-04-16
2012-01-0915
Monte Carlo simulation is a popular tool for reliability assessment because of its robustness and ease of implementation. A major concern with this method is its computational cost; standard Monte Carlo simulation requires quadrupling the number of replications for halving the standard deviation of the estimated failure probability. Efforts to increase efficiency focus on intelligent sampling procedures and methods for efficient calculation of the performance function of a system. This paper proposes a new method to manage cost that views design as a decision among alternatives with uncertain reliabilities. Information from a simulation has value only if it enables the designer to make a better choice among the alternative options. Consequently, the value of information from the simulation is equal to the gain from using this information to improve the decision. A designer can determine the number of replications that are worth performing by using the method.
Technical Paper

System Failure Identification using Linear Algebra: Application to Cost-Reliability Tradeoffs under Uncertain Preferences

2012-04-16
2012-01-0914
Reaching a system level reliability target is an inverse problem. Component level reliabilities are determined for a required system level reliability. Because this inverse problem does not have a unique solution, one approach is to tradeoff system reliability with cost and to allow the designer to select a design with a target system reliability, using his/her preferences. In this case, the component reliabilities are readily available from the calculation of the reliability-cost tradeoff. To arrive at the set of solutions to be traded off, one encounters two problems. First, the system reliability calculation is based on repeated system simulations where each system state, indicating which components work and which have failed, is tested to determine if it causes system failure, and second, the task of eliciting and encoding the decision maker's preferences is extremely difficult because of uncertainty in modeling the decision maker's preferences.
Journal Article

Flexible Design and Operation of a Smart Charging Microgrid

2014-04-01
2014-01-0716
The reliability theory of repairable systems is vastly different from that of non-repairable systems. The authors have recently proposed a ‘decision-based’ framework to design and maintain repairable systems for optimal performance and reliability using a set of metrics such as minimum failure free period, number of failures in planning horizon (lifecycle), and cost. The optimal solution includes the initial design, the system maintenance throughout the planning horizon, and the protocol to operate the system. In this work, we extend this idea by incorporating flexibility and demonstrate our approach using a smart charging electric microgrid architecture. The flexibility is realized by allowing the architecture to change with time. Our approach “learns” the working characteristics of the microgrid. We use actual load and supply data over a short time to quantify the load and supply random processes and also establish the correlation between them.
Technical Paper

A Methodology of Design for Fatigue Using an Accelerated Life Testing Approach with Saddlepoint Approximation

2019-04-02
2019-01-0159
We present an Accelerated Life Testing (ALT) methodology along with a design for fatigue approach, using Gaussian or non-Gaussian excitations. The accuracy of fatigue life prediction at nominal loading conditions is affected by model and material uncertainty. This uncertainty is reduced by performing tests at a higher loading level, resulting in a reduction in test duration. Based on the data obtained from experiments, we formulate an optimization problem to calculate the Maximum Likelihood Estimator (MLE) values of the uncertain model parameters. In our proposed ALT method, we lift all the assumptions on the type of life distribution or the stress-life relationship and we use Saddlepoint Approximation (SPA) method to calculate the fatigue life Probability Density Functions (PDFs).
Journal Article

A Methodology for Fatigue Life Estimation of Linear Vibratory Systems under Non-Gaussian Loads

2017-03-28
2017-01-0197
Fatigue life estimation, reliability and durability are important in acquisition, maintenance and operation of vehicle systems. Fatigue life is random because of the stochastic load, the inherent variability of material properties, and the uncertainty in the definition of the S-N curve. The commonly used fatigue life estimation methods calculate the mean (not the distribution) of fatigue life under Gaussian loads using the potentially restrictive narrow-band assumption. In this paper, a general methodology is presented to calculate the statistics of fatigue life for a linear vibratory system under stationary, non-Gaussian loads considering the effects of skewness and kurtosis. The input loads are first characterized using their first four moments (mean, standard deviation, skewness and kurtosis) and a correlation structure equivalent to a given Power Spectral Density (PSD).
X