Refine Your Search

Topic

null

Search Results

Technical Paper

Combined CFD - Experimental Analysis of the In-Cylinder Combustion Phenomena in a Dual Fuel Optical Compression Ignition Engine

2021-09-05
2021-24-0012
Methane supply in diesel engines operating in dual fuel mode has demonstrated to be effective for the reduction of particulate matter and nitric oxides emissions from this type of engine. In particular, methane is injected into the intake manifold to form a premixed charge with air, while a reduced amount of diesel oil is still directly injected to ignite the mixture inside the cylinder. As a matter of fact, the liquid fuel burns following the usual diffusive combustion, so activating the gaseous fuel oxidation in a premixed flame. Clearly, the whole combustion process appears to be more complex to be described in a CFD simulation, mainly because it is not always possible to select in the 3-dimensional codes a different combustion model for each fuel and, also, because other issues arise from the interaction of the two fuels.
Technical Paper

Infrared Diagnostics of a Li-Polymer Battery for the Estimation of the Surface Temperature Distribution and the Heat Transfer Parameters

2020-09-15
2020-01-2026
A growing number of electric vehicles (EV) and hybrid electric vehicles (HEV) in the present market depicts the rapid growing demand for energy storage systems. The battery’s main peculiarities must be the power density and reliability over time. The temperature strongly affects battery performance for low and high intensity. In particular, the management of the heat generated by the battery itself is one of the main aspects to handle to preserve the performance over time. The objective of this paper is to compare the surface temperature of the lithium-ion polymer battery at different discharging rates by infrared thermography. Thermal imaging is performed to detect the battery surface temperature distribution, focusing on its variation over time and the local inhomogeneity. Temperature measurements are then used to estimate the contributions of the different heat transfer mechanisms for the dissipation of the heat generated by the battery.
Technical Paper

Thermal Imaging of a Li-Ion Battery for the Estimation of the Thermal Parameters and Instantaneous Heat Dissipated

2020-09-27
2020-24-0014
The electrochemical performance of a lithium-ion battery is strongly affected by the temperature. During charge and discharge cycles, batteries are subjected to an increment of temperature that can accelerate aging and loss of efficiency if critical values are reached. Knowing the thermal parameters that affect the heat exchange between the battery surface and the surrounding environment (air, cooling fins, plates, etc…) is fundamental to their thermal management. In this work, thermal imaging is applied to a laminated lithium-polymers battery as a non-invasive temperature-indication method. Measurements are taken during the discharge phase and the following cooling down until the battery reaches the ambient temperature. The 2d images are used to analyze the homogeneity of the temperature distribution on the battery surface. Then, experimental results are coupled with mathematical correlations.
Technical Paper

Modeling of Soot Deposition and Active Regeneration in Wall-flow DPF and Experimental Validation

2020-09-15
2020-01-2180
Growing concerns about the emissions of internal combustion engines have forced the adoption of aftertreatment devices to reduce the adverse impact of diesel engines on health and environment. Diesel particulate filters are considered as an effective means to reduce the particle emissions and comply with the regulations. Research activity in this field focuses on filter configuration, materials and aging, on understanding the variation of soot layer properties during time, on defining of the optimal strategy of DPF management for on-board control applications. A model was implemented in order to simulate the filtration and regeneration processes of a wall-flow particulate filter, taking into account the emission characteristic of the engine, whose architecture and operating conditions deeply affect the size distribution of soot particles.
Journal Article

Full-Cycle CFD Modeling of Air/Fuel Mixing Process in an Optically Accessible GDI Engine

2013-09-08
2013-24-0024
This paper is focused on the development and application of a CFD methodology that can be applied to predict the fuel-air mixing process in stratified charge, sparkignition engines. The Eulerian-Lagrangian approach was used to model the spray evolution together with a liquid film model that properly takes into account its effects on the fuel-air mixing process into account. However, numerical simulation of stratified combustion in SI engines is a very challenging task for CFD modeling, due to the complex interaction of different physical phenomena involving turbulent, reacting and multiphase flows evolving inside a moving geometry. Hence, for a proper assessment of the different sub-models involved a detailed set of experimental optical data is required. To this end, a large experimental database was built by the authors.
Journal Article

Experimental and Numerical Investigation in a Turbocharged GDI Engine Under Knock Condition by Means of Conventional and Non-Conventional Methods

2015-04-14
2015-01-0397
The present paper deals with a comprehensive analysis of the knocking phenomenon through experiments and numerical simulations. Conventional and non-conventional measurements are performed on a 4-stroke, 4-cylinder, turbocharged GDI engine. The engine exhibits optical accesses to the combustion chamber. Imaging in the UV-visible range is carried out by means of a high spatial and temporal resolution camera through an endoscopic system and a transparent window in the piston head. This last is modified to allow the view of the whole combustion chamber almost until the cylinder walls, to include the so-called eng-gas zones. Optical data are correlated to in-cylinder pressure-based indicated analyses in a cycle resolved approach.
Technical Paper

Correlation between Simulated Volume Fraction Burned Using a Quasi-Dimensional Model and Flame Area Measured in an Optically Accessible SI Engine

2017-03-28
2017-01-0545
Multi-fuel operation is one of the main topics of investigative research in the field of internal combustion engines. Spark ignition (SI) power units are relatively easily adaptable to alternative liquid-as well as gaseous-fuels, with mixture preparation being the main modification required. Numerical simulations are used on an ever wider scale in engine research in order to reduce costs associated with experimental investigations. In this sense, quasi-dimensional models provide acceptable accuracy with reduced computational efforts. Within this context, the present study puts under scrutiny the assumption of spherical flame propagation and how calibration of a two-zone combustion simulation is affected when changing fuel type. A quasi-dimensional model was calibrated based on measured in-cylinder pressure, and numerical results related to the two-zone volumes were compared to recorded flame imaging.
Technical Paper

Experimental and Numerical Characterization of Diesel Injection in Single-Cylinder Research Engine with Rate Shaping Strategy

2017-09-04
2017-24-0113
The management of multiple injections in compression ignition (CI) engines is one of the most common ways to increase engine performance by avoiding hardware modifications and after-treatment systems. Great attention is given to the profile of the injection rate since it controls the fuel delivery in the cylinder. The Injection Rate Shaping (IRS) is a technique that aims to manage the quantity of injected fuel during the injection process via a proper definition of the injection timing (injection duration and dwell time). In particular, it consists in closer and centered injection events and in a split main injection with a very small dwell time. From the experimental point of view, the performance of an IRS strategy has been studied in an optical CI engine. In particular, liquid and vapor phases of the injected fuel have been acquired via visible and infrared imaging, respectively. Injection parameters, like penetration and cone angle have been determined and analyzed.
Technical Paper

Characterization of Combustion and Emissions of a Propane-Diesel Blend in a Research Diesel Engine

2016-04-05
2016-01-0810
The interest of the vehicle producers in fulfillment emission legislations without adopting after treatment systems is driving to the use of non-conventional energy sources for modern engines. A previous test campaign dealing with the use of blends of diesel and propane in a CI engine has pointed out the potential of this non-conventional fuel for diesel engines. The soft adaptation of the common rail injection system and the potential benefits, in terms of engine performances and pollutant emissions, encourage the use of propane-diesel blends if an optimization of the injection strategies is performed. In this work, the performances of a propane-diesel mixture in a research diesel engine have been investigated. The injection strategies of Euro 5 calibration have been used as reference for the development of optimized strategies. The aim of the optimization process was to ensure the same engine power output and reduce the pollutant emissions.
Technical Paper

Experimental and Numerical Investigation of the Idle Operating Engine Condition for a GDI Engine

2011-09-11
2011-24-0031
The paper investigates the idle operating condition of a current production turbocharged Gasoline Direct Injected (GDI) high performance engine both from an experimental and a numerical perspective. Due to the low engine speed, to the low injection pressure and to the null contribution of the turbocharger, the engine condition is far from the standard points of investigation. According to the low heat flux due to combustion, temperature levels are low and reduced fuel evaporation is expected. Consequently, fuel spray evolution within the combustion chamber and spray/wall interaction are key points for the understanding of the combustion process. In order to properly investigate and understand the many complex phenomena, a wide set of engine speeds was experimentally investigated and, as far as the understanding of the physics of spray/wall interaction is concerned, many different injection strategies are tested.
Technical Paper

Temperature Measurements of the Piston Optical Window in a Research Compression Ignition Engine via Thermography and Templugs

2018-04-03
2018-01-0083
Internal combustion engines are characterized by high pressure and thermal loads on pistons and in cylinders. The heat generated by the combustion process is dissipated by means of water and oil cooling systems. For the best design and optimization of the engine components it is necessary to know the components temperature in order to estimate the thermal flows. The purpose of this work is to measure the piston sapphire window temperature in a research optically accessible engine by combining two different techniques: measurements with templugs and with thermography. The method is very simple and can provide a reliable value of temperature within a small interval. It fits well for applications inside the engine because of its low technical level requirements. It consists of application of temperature sensitive stickers on the target component that makes it a very robust method, not affected by piston movement.
Technical Paper

CFD Analysis of Different Methane/Hydrogen Blends in a CI Engine Operating in Dual Fuel Mode

2022-08-30
2022-01-1056
Nowadays, the stricter regulations in terms of emissions have limited the use of diesel engines on urban roads. On the contrary, for marine and off-road applications the diesel engine still represents the most feasible solution for work production. In the last decades, dual fuel operation with methane supply has been widely investigated. Starting from previous studies on a research engine, where diesel-methane dual fuel combustion has been deepened both experimentally and numerically with the aid of a CFD code, the authors implemented and tested a kinetic mechanism. It is obtained from the combination of the well-established GRIMECH 3.0 and a detailed scheme for a diesel surrogate oxidation. Moreover, the Autoignition-Induced Flame Propagation model, included in the ANSYS Forte® software, is applied because it can be considered the most appropriate model to describe dual fuel combustion.
Technical Paper

Measurements and Modeling of the Temperature of a Li-polymer Battery Provided with Different Coatings for Heat Dissipation

2022-06-14
2022-37-0013
The battery efficiency is strongly affected by the operating temperature, granting the best performance in a limited range. Great attention is given to the design and the testing of materials for the battery heat dissipation. In the present study, the thermal behavior of a Li-polymer cell, which is part of a battery pack for electric vehicles, is investigated. The cell is provided with different coatings of carbon, graphene, and silicone, used in turn, to dissipate the heat generated during the operation in natural convection. The coating is placed only on one side of the battery while the other one is inspected via thermal imaging. Optical diagnostics in the infrared band are used to evaluate the bi-dimensional distribution of the battery surface temperature and the effect of the coatings. Different operating conditions are tested by varying the current demand.
Technical Paper

Quasi-Dimensional Simulation of Downsizing and Inverter Application for Efficient Part Load Operation of Spark Ignition Engine Driven Micro-Cogeneration Systems

2018-10-30
2018-32-0061
Within the context of distributed power generation, small size systems driven by spark ignition engines represent a valid and user-friendly choice, that ensures good fuel flexibility. One issue is that such applications are run at part load for extensive periods, thus lowering fuel economy. Employing an inverter (fitted between the generator and load) allows engine operation within a wide range of crankshaft rotational velocity, therefore improving efficiency. For the purpose of evaluating the benefits of this technology within a co-generation framework, two configurations were modeled by using the GT-Power simulation software. After model calibration based on measurements on a small size engine for two-wheel applications, the downsized version was compared to a larger power unit operated at constant engine speed for a scenario that featured up to 10 kW rated power.
Technical Paper

Experimental and Numerical Investigation of the Effect of Split Injections on the Performance of a GDI Engine Under Lean Operation

2015-09-06
2015-24-2413
Gasoline direct injection (GDI) allows flexible operation of spark ignition engines for reduced fuel consumption and low pollutants emissions. The choice of the best combination of the different parameters that affect the energy conversion process and the environmental impact of a given engine may either resort to experimental characterizations or to computational fluid dynamics (CFD). Under this perspective, present work is aimed at discussing the assessment of a CFD-optimization (CFD-O) procedure for the highest performance of a GDI engine operated lean under both single and double injection strategies realized during compression. An experimental characterization of a 4-stroke 4-cylinder optically accessible engine, working stratified lean under single injection, is first carried out to collect a set of data necessary for the validation of a properly developed 3D engine model.
Technical Paper

Split Injection in a GDI Engine Under Knock Conditions: An Experimental and Numerical Investigation

2015-09-06
2015-24-2432
Present work investigates both experimentally and numerically the benefits deriving from the use of split injections in increasing the engine power output and reducing the tendency to knock of a gasoline direct injection (GDI) engine. The here considered system is characterized by an optical access to the combustion chamber. Imaging in the UV-visible range is carried out by means of a high spatial and temporal resolution camera through an endoscopic system and a transparent window placed in the piston head. This last is modified to allow the view of the whole combustion chamber almost until the cylinder walls, to include the so-called eng-gas zones of the mixture, where undesired self-ignition may occur under some circumstances. Optical data are correlated to in-cylinder pressure oscillations on a cycle resolved basis.
Technical Paper

Comparison of Spray Characteristics Measured in an Optical Single Cylinder Diesel Engine with 1D Model

2014-04-01
2014-01-1424
In recent years, several studies on the efficiency of modern diesel engines have focused on the modeling of combustion process in its different phases. Here, analytical equations are used to describe the physical phenomena that occur in the cylinder. The good agreement between the experimental and simulated data could improve the predictive capabilities of the computational code and reduce the cost of experimental activities. For the modeling of a diesel spray, the first step has been to investigate its behavior in a non-combusting environment; in particular, Musculus and Kattke proposed a model for the simulation of the injection of fuel in non-reacting still environment. Starting from that knowledge, the authors apply the injection model to a compression ignition research engine. By means of an optical engine, injection phase has been investigated via 2D digital imaging. The main jet characteristics like penetration and dispersion angle have been measured.
Technical Paper

Temperature Measurements of the Piston Optical Window in a Research Compression Ignition Engine to Set-Up a 1d Model of Heat Transfer in Transient Conditions

2019-09-09
2019-24-0182
The analysis of heat losses in internal combustion engines (ICEs) is fundamental to evaluate and to improve engine efficiency. Detailed and reliable heat transfer models are required for more complex 1d-3d combustion models. At the same time, the thermal status of engine components, like pistons, is needed for an efficient design. Measurements of piston temperature during ICEs operation represent an important and challenging result to get for the aforementioned purposes. In the present work, temperature measurements collected at different engine speeds and loads, both in motored and fired modes, have been performed and used to set-up a theoretical correlation and 1d model of heat transfer through the optical window of the piston. The in-cylinder gas and external ambient temperature, together with the thermodynamic and material properties are given. The model has been first calibrated in some selected operating conditions and then validated in the remaining.
Technical Paper

Numerical Modelling and Experimental Validation of the Thermal Behavior of Li-ion Batteries for EVs Applications

2023-08-28
2023-24-0153
In this work, a dynamic 0-D electro-thermal model of a lithium-polymer battery for automotive applications is presented. The model predicts the battery temperature during its charging/discharging phases under different environmental and operating conditions, by considering the requested power or current, the coolant flow rate and its temperature as model inputs. The model was first validated with experimental data carried out at the test bench where only the convective heat transfer between the battery and the ambient air was considered. The accuracy of the internal heat generation model was experimentally assessed for different current discharge rates. Then, a liquid cooling system was designed on purpose, assembled, and installed on the battery at the test bench for the improvement of the model predictions in liquid convection conditions.
Technical Paper

Conversion of a Small Size Passenger Car to Hydrogen Fueling: 0D/1D Simulation of Port- vs Direct-Injection and Boosting Requirements

2023-08-28
2023-24-0074
Hydrogen is an energy vector with low environmental impact and will play a significant role in the future of transportation. Converting a spark ignition (SI) engine powered vehicle to H2 fueling has several challenges, but was overall found to be feasible with contained cost. Fuel delivery directly to the cylinder features numerous advantages and can successfully mitigate backfire, a major issue for H2 SI engines. Within this context, the present work investigated the specific fuel system requirements in port- (PFI) and direct-injection (DI) configurations. A 0D/1D model was used to simulate engine operating characteristics in several working conditions. As expected, the model predicted significant improvement of volumetric efficiency for DI compared to the PFI configuration. Boosting requirements were predicted to be at levels quite close to those for gasoline fueling.
X