Refine Your Search

Search Results

Viewing 1 to 19 of 19
Technical Paper

A Method for Calculating High Frequency Dynamic Characteristics of Rubber Isolators under Different Preloads

2022-03-29
2022-01-0307
Because the power unit of electric vehicle has large torque, the rubber mount of electric vehicle is fully compressed under the condition of full throttle acceleration. When designing the mount of electric vehicle, the dynamic-to-static stiffness ratio of mount under the case should be as low as possible to improve the vibration isolation rate of the mount. In this paper, a method for calculating the high frequency dynamic characteristics of rubber isolators under different preloads is presented. Firstly, the dynamic characteristics of rubber specimens under various shear pre-strains were tested. The test results show that the dynamic stiffness of specimen decreases at first and then increases with the increase of shear strain. The viscoelastic parameters of rubber in frequency domain under different pre-strain were identified according to the experimental data. Secondly, a finite element modeling method was proposed.
Technical Paper

Research on Mid-Low Frequency Noise Reduction Material and Its Structure Design

2021-04-06
2021-01-0815
Aiming at the problem of middle and low frequency noise absorption, a combined sound-absorbing structure is designed based on porous material and a coiled-up cavity resonance structure. Combined with the sound absorption principle of porous materials and coiled-up cavities, a theoretical analytical model was established. By the finite element method, the sound absorption coefficient curve of the combined structure in a frequency range of 500-2000Hz is calculated, and the correctness of the analytical calculation and the finite element simulation calculation was verified in the impedance tube experiment. The results show that the combined structure has good sound absorption performance in the 500Hz-2000Hz frequency band, and the sound absorption peak appears near the 1108Hz frequency, reaching nearly perfect sound absorption. Compared with a single porous material, the sound absorption performance of the combined structure is better.
Technical Paper

Experimental Study on Hydraulic Pressure Feedforward and Feedback PID Control of I-EHB System with Friction Disturbance

2021-04-06
2021-01-0979
This paper designs the important components and structure of the integrated electro-hydraulic brake system (I-EHB). Firstly, the simplified linear system is modeled, and the transfer function without considering the nonlinear disturbance such as system friction is derived, and the correctness of the linear system is preliminarily verified by AMESim. Then set up the I-EHB system test bench, and use the Stribeck friction model to identify the friction torque parameters in the static and kinetic friction stages of the system to obtain a more accurate friction model. Finally, based on the I-EHB system model of friction disturbance, a pressure-speed-current three-loop cascade PID controller is designed, and a feedforward controller based on the system model is added to form the control structure of “pressure feedforward compensation + pressure-speed-current closed-loop cascade PID”.
Technical Paper

Analysis and Experimental Research on Whine Noise of the Engine Balance Shaft Gear System

2023-05-08
2023-01-1152
An Inline 4-cylinder engine is equipped with second-order balance shafts. When the engine is running under no-load acceleration conditions, the gear system of the balance shaft generated whine noise. In this paper, an analysis and experiment method for reducing the whine noise is presented. First, a flexible multi-body dynamic model of the engine is established, which includes shaft and casing deformation, micro-modification of the gears. Taking the measured cylinder pressure as input, the load on each gear of balance shaft gear system is calculated. In addition, the influence of tooth surface micro-modification on the meshed noise was analyzed. The results show that the dynamic meshing force between the crank gear and the shim gear is large under the original tooth surface micro-modification parameters, which is the main reason of the whine noise.
Technical Paper

Mass Flow Rate Prediction of Electronic Expansion Valve Based on Improved Particle Swarm Optimization Back-Propagation Neural Network Algorithm

2022-03-29
2022-01-0181
Electronic expansion valve as a throttle element is widely used in heat pump systems and flow characteristics are its most important parameter. The flow characteristics of the electronic expansion valve (EXV) with a valve port diameter of 3mm are studied, when the refrigerant R134a is used as the working fluid. The main factors affecting the flow characteristics are researched by adopting the orthogonal experiment method and single factor control method, for example, inlet pressure, inlet temperature, outlet pressure and valve opening. The results show that the expansion valve opening degree has the greatest influence on mass flow rate. In view of the complicated phase change of the refrigerant passing through electronic expansion valve, it is difficult to model the flow characteristics accurately.
Technical Paper

Dynamic Modeling Method of Electric Vehicle Thermal Management System Based on Improved Moving Boundary Method

2022-03-29
2022-01-0183
The thermal management system, which is used to improve driving safety and thermal comfort, is one of the most important systems in electric vehicles. In recent years, researchers have coupled the heat pump system and the battery cooling system to effectively improve the heating COP (Coefficient of Performance). Therefore an accurate dynamic model of thermal management system plays a key role in investigating system performance and optimal control strategies. In this paper, an electric vehicle thermal management system based on four-way valve heat pump system is designed. The moving boundary method is improved by considering the unsteady flow of the external fluid, and then a 13-order dynamic model of the thermal management system is established. Firstly, the control equations of evaporator, condenser and chiller are derived according to the principle of conservation, and then a dynamic model of thermal management system is established in Simulink.
Technical Paper

A Study on Editing Method of Road Load Spectrum of Automobile Rubber Isolator Using Time-Frequency Domain Methods

2022-03-29
2022-01-0272
In order to enhance the efficiency of durability testing of automobile parts, a time-frequency domain accelerated editing method of road load time series of rubber mount on powertrain was discussed. Based on Stockwell Transform method and Accumulative Power Spectral Density, a new time-frequency domain accelerated editing method (ST-APSD) was proposed. The accumulative power spectral density was obtained by ST of the load time series signal of automobile powertrain rubber mounting force which is acquired by the real vehicle in the test field. Based on the accumulative power spectral density, the threshold value was proposed to identify and delete the small damage load fragments, and then the acceleration spectrum was obtained.
Technical Paper

Modeling and Analysis of the Hysteresis Behavior of the Tensioner

2022-03-29
2022-01-0609
The tensioner of the engine front end accessory drive system was taken as a study object, and the mechanical structure and working principle of the automatic tensioner were analyzed. The hysteresis behavior test of tensioner torque-angular displacement was carried out, and the effects of different excitation frequencies and excitation amplitudes on the hysteresis behavior of the tensioner were analyzed. According to the modified Dahl hysteresis model, the model parameters of the tensioner was identified. Based on the identified model parameters, the hysteresis behavior of the tensioner was calculated, and the calculation model accuracy was verified with the tested results. The influence of the hysteresis curve transition area exponent on the tensioner behavior was studied. The dynamic behavior of the engine front end accessory drive system was simulated using the simulation software.
Technical Paper

Study on Flow Rate and Flow Field Characteristics of Gerotor Pump with Multi-arc Combined Profile

2022-03-29
2022-01-0632
The working principle and performance test method of the gerotor pump with multi-arc combined profile are introduced. According to the formation method of the rotor tooth profile, the calculation method of the inner rotor tooth profile is introduced, and the meshing characteristics of the inner and outer rotors are analyzed. On this basis, a calculation method for the displacement and instantaneous flow rate of the gerotor pump with multi-arc combined profile is proposed. In addition, a calculation model of the flow field characteristics of the gerotor pump with multi-arc combined profile is established, and the validity of the model is verified by experiments. Based on the model of traditional single-arc gerotor pump and the model of the gerotor pump with multi-arc combined profile, the flow rate, internal flow velocity, pressure distribution and gas volume fraction distribution under different working conditions are calculated respectively.
Technical Paper

A Method for Identifying Tortuosity, Viscous Characteristic Length and Thermal Characteristic Length of Kapok Mixed Fiber Porous Materials

2023-05-08
2023-01-1058
Tortuosity, viscous characteristic length and thermal characteristic length are three important parameters for estimating the acoustic performance of porous materials, and it is usually measured by ultrasonic measurement technology, which is costly. In this paper, a method for identifying the tortuosity, viscous characteristic length and thermal characteristic length for the porous fiber materials mixed with kapok fiber and two kinds of other fiber materials is proposed. The tortuosity is calculated by using the porosity and high-frequency normal sound absorption coefficient of porous materials. According to the normal sound absorption coefficient curve of porous materials under plane wave incidence, viscous characteristic length and thermal characteristic length are identified through the Johnson-Champoux-Allard-Lafarge (JCAL) model and genetic algorithm by using the measured parameters, the calculated tortuosity and static thermal permeability.
Technical Paper

Parameters Identification of Mooney-Rivlin Model for Rubber Mount Based on Surrogate Model

2023-05-08
2023-01-1150
As an important vibration damping element in automobile, the rubber mount can effectively reduce the vibration transmitted from the engine to the frame. In this study, a method of parameters identification of Mooney-Rivlin model by using surrogate model was proposed to more accurately describe the mechanical behavior of mount. Firstly, taking the rubber mount as the research object, the stiffness measurement was carried out. And then the calculation model of the rubber mount was established with Mooney-Rivlin model. Latin hypercube sampling was used to obtain the force and displacement calculation data in different directions. Then, the parameters of the Mooney-Rivlin model were taken as the design variables. And the error of the measured force-displacement curve and the calculated force-displacement curve was taken as the system response. Two surrogate models, the response surface model and the back-propagation neural network, were established.
Journal Article

Research on Influencing Factors of Sound Absorption Coefficient in Reverberation Chamber

2021-04-06
2021-01-0359
In the automotive industry, testing the sound absorption coefficient of acoustic materials through reverberation chambers has been widely used. The advantage of this method is that sound waves are incident on the surface of acoustic materials randomly, which is more in line with actual engineering. At present, most of the reverberation chamber design and construction refers to the international standard ISO 354-2003. However, although the design indicators of the reverberation chamber have already met the requirements of the standard ISO 354-2003, there are still some differences between the test results of different reverberation chambers on the same group of samples to be tested, and sometimes the differences are so big they affect the engineering applications. In this paper, the sound absorption coefficients of the same group of samples in different reverberation chambers are tested, and there are some differences in the sound absorption coefficients.
Journal Article

Finite Element Model Modification of the Mount Bracket Based on Modal Test

2022-03-29
2022-01-0301
The mount bracket is an important part of the mount system, and its dynamic characteristics will affect dynamic characteristics of the mount system, which means it will affect NVH(Noise, Vibration, Harshness) of the vehicle. Based on the large error between the test result and the finite element analysis(FEA) result, the dynamic finite element model of the mount bracket can be modified from the material parameters and the equivalent boundary of the bolt joint. In this paper, a method to identify the parameters of the mount bracket model by combining modal test, FEA, and the mathematical optimization model was presented. Firstly, based on HyperStudy platform, the optimization objective was minimizing the natural frequency error between FEA and free mode test, and the material parameters of the bracket to be identified were used as design variables to build the optimization function. The global response surface method was used for iteration to complete the identification.
Journal Article

Numerical Investigation on the Internal Flow Field of Electronic Expansion Valve as the Throttle Element

2022-03-29
2022-01-0318
As one of the key components of the heat pump system, the electronic expansion valve mainly plays the role of throttling and reducing pressure in the heat pump system. The refrigerant flowing through the orifice will produce complex phase change. It is of great significance to study the internal flow field by means of CFD calculations. Firstly, a three-dimensional fluid model is established and the mesh is divided. Secondly, the phase change model is selected, the material is defined and the boundary conditions are determined. According to the principle of the fluid passing through thin-walled small holes, the flow characteristics of electronic expansion valve are theoretically analyzed. Then the flow characteristics of expansion valve are numerically calculated, and a bench for testing mass flow rate of the expansion valve is built. Then the theoretical value, CFD value and experimental value are compared to verify the correctness of the established three-dimensional fluid model.
Technical Paper

Analysis of the Dynamic Performance of an Engine Front End Accessory Drive System with an Asymmetric Damping Tensioner

2020-04-14
2020-01-0409
The automatic tensioner is an important component of the engine front end accessory drive system (EFEADS). It maintains the tension of the belt steadily and reduces the slip of pulley, which is benefit for improving the life of V-ribbed belt. In this paper, an EFEADS model is established which is considering with the hysteretic behavior and the asymmetry of friction damping of a tensioner. A four-pulley EFEADS is taken as a study subject. The dynamic responses of system, such as the oscillation angle of each pulley, the slip factor of pulley, the oscillation of tensioner arm and the dynamic belt tension are analyzed with symmetric damping and asymmetric damping tensioner. Meanwhile, the influence of asymmetric damping factors of tensioner on the dynamic response of EFEADS is also investigated.
Technical Paper

Research on Clearance of Multi-Arc Combined Gerotor Pump Based on CFD

2022-03-29
2022-01-0633
Due to the advantages of compact structure, stable operation, and low cost, the gerotor pumps are widely used in the cooling and lubricating system of automobiles. The multi-arc combined gerotor pump is a gerotor pump with a special profile. In this paper, the calculation method of the inner and outer rotor profile of the above-mentioned pump is introduced, and its meshing characteristics are analyzed. In general, three kinds of clearances would be processed to ensure the operation of the pump, named as tip clearance, axial clearance, and radial clearance. These clearances have a great impact on the performance of the pump so that it is important to design them. In response to this problem, this paper established a flow field characteristics model of the multi-arc combined gerotor pump based on computational fluid dynamics (CFD) method, and the effectiveness of the model is then verified through experiments.
Technical Paper

A Fatigue Life Prediction Method of Rubber Material for Automobile Vibration Isolator under Road Load Spectrum

2022-03-29
2022-01-0253
Automobile rubber isolator was subjected to random load cycle for a long time in the service process, and its main rubber material for vibration isolation was prone to fatigue failure. Since the traditional Miner damage theory overlooked the load randomness, it had a prediction error problem. In order to improve the prediction accuracy of rubber fatigue life, the traditional Miner damage theory was modified by random uncertainty theory to predict the rubber fatigue life under random load. Firstly, the rubber dumbbell-shaped test column, which was vulcanized from rubber materials commonly used in vibration isolators, was taken as the research object. The uniaxial fatigue test of rubber under different strain amplitudes and strain mean values was carried out. Then the fatigue characteristic curve of rubber with equivalent strain amplitude as the damage parameter was established.
Technical Paper

Simulation and Optimization Method of High Frequency Dynamic Characteristics of Rubber Mount

2021-04-06
2021-01-0663
A non-linear viscoelastic constitutive model composed of Mooney-Rivlin model and multiple Maxwell models is used to calculate the high frequency dynamic characteristics of rubber mounts. The equivalent mechanical model of the rubber vibration mount is established and the difference between the drive-point dynamic stiffness and the cross-point dynamic stiffness is analyzed. The analysis shows that the use of the cross-point dynamic characteristic test method can eliminate the influence of the additional inertial force in the test, which is suitable for rubber mounts’ high-frequency dynamic characteristics test; at the same time, a finite element model of the rubber mount is built to analyze its cross- point dynamic stiffness and drive-point dynamic stiffness. The analysis results are compared with the experimental results which verifies the finite element model and the correctness of the mechanical model.
Technical Paper

Optimization Methods to Enhance Performance of a Powertrain Mounting System at Key on and Key off

2024-04-09
2024-01-2389
To enhance the transient vibration performance of the vehicle at key on and key off, a method for optimizing mount parameters of a powertrain mounting system (PMS) is proposed. Uncertainties of mount parameters widely exist in a PMS, so a method for optimizing mount parameters of a PMS, which treats the mount parameters of a PMS as uncertain, is also proposed in this paper. Firstly, a 13 degrees of freedom (DOFs) model including car body with 3 DOFs, a PMS with 6 DOFs and unsprung mass with 4 DOFs is established, and the acceleration of the active side of mounts is calculated. An experiment is carried out to measure the accelerations located at active and passive sides of each mount and the accelerations of seat track. A comparison is made between the measured and estimated accelerations, and the proposed model is validated. Two optimization methods for the PMS are proposed based on the developed 13 DOFs model.
X