Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Technical Paper

Thin Film Measurement Assessment of the VPCAR Water Recovery System in Partial and Microgravity

2007-07-09
2007-01-3039
The Vapor Phase Catalytic Ammonia Removal (VPCAR) system is being developed to recycle water for future NASA Exploration Missions [1,2,3,4,5]. Reduced gravity testing of the VPCAR System has been initiated to identify any potential problems with microgravity operation. Two microgravity testing campaigns have been conducted on NASA's C-9B Reduced Gravity Aircraft. These tests focused on the fluid dynamics of the unit's Wiped-Film Rotating Disk (WFRD) evaporator. The experiments used a simplified system to study the process of forming a thin film on a rotating disk. The configuration simulates the application of feed in the VPCAR's WFRD evaporator. The first round of aircraft testing, which was completed in early 2006, indicated that a problem with microgravity operation of the WFRD existed. It was shown that in reduced gravity the VPCAR wiper did not produce a uniform thin film [6]. The film was thicker near the axis of rotation where centrifugal forces are small.
Technical Paper

Compaction and Drying in a Low-Volume, Deployable Commode

2007-07-09
2007-01-3264
We present a device for collecting and storing feces in microgravity that is user-friendly yet suitable for spacecraft in which cabin volume and mass are constrained. On Apollo missions, the commode function was served using disposable plastic bags, which proved time-consuming and caused odor problems. On Skylab, the space shuttle, and the International Space Station, toilets have used airflow beneath a seat to control odors and collect feces. We propose to incorporate airflow into a system of self-compacting, self-drying collection and stowage bags, providing the benefits of previous commodes while minimizing mass and volume. Each collection bag consists of an inner layer of hydrophobic membrane that is permeable to air but not liquid or solid waste, an outer layer of impermeable plastic, and a collapsible spacer separating the inner and outer layers. Filled bags are connected to space vacuum, compacting and drying their contents.
Technical Paper

On the Development of Advanced Life Support Systems Maximally Reliant on Biological Systems

1998-07-13
981535
Distant and/or long-term missions, particularly Mars and lunar bases, will require a high degree of regenerative systems utilization. Bio-regenerative systems inherently lend themselves to integrative application, and can serve multiple processing functions in Advanced Life Support (ALS) systems. Striving for maximal use of bio-regenerative systems can reveal possibilities and relationships difficult to conceptualize within the context of a “unit process” methodology common to physico-chemical (P/C) systems. The required regenerative functions of biomass production and solid, liquid, and air processing are discussed, and a potential integrated ALS system scenario including “soil'based” plant production is developed to illustrate potential ramifications of biological (and P/C) system integration.
Technical Paper

Gaseous Ammonia Removal in Biofilters: Effect of Biofilter Media on Products of Nitrification

1998-07-13
981613
The use of biofilters for the control of air contaminants in Advanced Life Support (ALS) systems is currently being investigated by the Waste Processing and Resource Recovery research team of the New Jersey - NSCORT (NASA Specialized Center of Research and Training). Ammonia (NH3) was selected as a test air contaminant as it presents special challenges to the sustained operation of a biofilter. Ammonia loading to the ALS atmosphere will likely be from waste treatment (biological treatment of human, plant and food wastes) and food processing operations. This NH3 has the potential of causing adverse effects on plant growth and humans.
Technical Paper

Evaluation of the Microwave Enhanced Freeze Drying Technology for Processing Solid Wastes

2008-06-29
2008-01-2051
A Microwave Enhanced Freeze Drying Solid Waste (MEFDSW) processor was delivered to NASA-Ames Research Center by Umpqua Company having been funded through a Small Business Innovative Research Phase II program. The prototype hardware was tested for its performance characteristics and for its functionality with the primary focus being the removal of water from solid wastes. Water removal from wastes enables safe storage of wastes, prevents microbes from growing and propagating using the waste as a substrate and has potential for recovery and reuse of the water. Other objectives included measurements of the power usage and a preliminary estimate of the Equivalent System Mass (ESM) value. These values will be used for comparison with other candidate water removal technologies currently in development.
Technical Paper

Investigations into Water Recovery from Solid Wastes using a Microwave Solid Waste Stabilization and Water Recovery System

2009-07-12
2009-01-2341
A microwave powered solid waste stabilization and water recovery prototype was delivered to Ames Research Center through an SBIR Phase II contract awarded to Umpqua Research Company. The system uses a container capable of holding 5.7 dm3 volume of waste. The microwave power can be varied to operate either at full power (130 W) or in a variable mode from 0% and 100%. Experiments were conducted with different types of wastes (wet cloth, simulated feces/diarrheal wastes, wet trash and brine) at different levels of moisture content and dried under varying microwave power supply. This paper presents the experimental data. The results provide valuable insight into the different operation modes under which the prototype can be used to recover water from the wastes in a space environment. Further investigations and testing of the prototype are recommended.
Technical Paper

Optimization of Feedstock Composition and PreProcessing for Composting in Advanced Life Support Systems

2001-07-09
2001-01-2297
Advanced Life Support (ALS) systems designed for long-duration manned space missions, particularly permanent bases on the Moon or Mars, are likely to employ extensive use of regenerative closed loop systems, including the production of higher plants for food. Such systems will produce substantial amounts of inedible plant material in addition to other standard mission wastes. Composting is one of the several methods currently under investigation for waste processing and resource recovery in ALS systems. While composting is a robust microbiological process that can be utilized to treat a variety of organic materials under a wide range of environmental conditions, both feedstock preparation and process control require optimization. For instance, initial waste feedstock composition, carbon to nitrogen ratio (C:N), particle size, and moisture content are critical factors for ensuring optimal processing conditions and maximal rates of degradation.
Technical Paper

Modeling of a Composting System within BIO-Plex

2001-07-09
2001-01-2323
BIO-Plex is a ground-based test bed currently under development by NASA for testing technologies and practices that may be utilized in future long-term life support missions. All aspects of such an Advanced Life Support (ALS) System must be considered to confidently construct a reliable system, which will not only allow the crew to survive in harsh environments, but allow the crew time to perform meaningful research. Effective handling of solid wastes is a critical aspect of the system, especially when recovery of resources contained in the waste is required. This is particularly important for ALS Systems configurations that include a Biomass Production Chamber. In these cases, significant amounts of inedible biomass waste may be produced, which can ultimately serve as a repository of necessary resources for sustaining life, notably carbon, water, and plant nutrients. Numerous biological and physicochemical solid waste processing options have been considered.
Technical Paper

Considerations in Selection of Solid Waste Management Approaches in Long-Duration Space Missions

2002-07-15
2002-01-2476
Solid Waste Management (SWM) systems of current and previous space flight missions have employed relatively uncomplicated methods of waste collection, storage and return to Earth. NASA's long-term objectives, however, will likely include human-rated missions that are longer in both duration and distance, with little to no opportunity for re-supply. Such missions will likely exert increased demands upon all sub-systems, particularly the SWM system. In order to provide guidance to SWM Research and Technology Development (R&TD) efforts and overall system development, the establishment of appropriate SWM system requirements is necessary. Because future long duration missions are not yet fully defined, thorough mission-specific requirements have not yet been drafted.
Technical Paper

NASA's On-line Project Information System (OPIS) Attributes and Implementation

2006-07-17
2006-01-2190
The On-line Project Information System (OPIS) is a LAMP-based (Linux, Apache, MySQL, PHP) system being developed at NASA Ames Research Center to improve Agency information transfer and data availability, largely for improvement of system analysis and engineering. The tool will enable users to investigate NASA technology development efforts, connect with experts, and access technology development data. OPIS is currently being developed for NASA's Exploration Life Support (ELS) Project. Within OPIS, NASA ELS Managers assign projects to Principal Investigators (PI), track responsible individuals and institutions, and designate reporting assignments. Each PI populates a “Project Page” with a project overview, team member information, files, citations, and images. PI's may also delegate on-line report viewing and editing privileges to specific team members. Users can browse or search for project and member information.
Technical Paper

Results Summary of the Life Support and Habitation and Planetary Protection Workshop

2006-07-17
2006-01-2007
A workshop entitled the “Life Support & Habitation and Planetary Protection Workshop” was held in Houston, TX in April, 2005. The main objective of the workshop was to initiate communication, understanding, and a working relationship between the Life Support and Habitation1 (LSH) and Planetary Protection (PP) communities regarding the effect of the implementation of Mars human exploration PP policies on the Advanced Life Support2 (ALS), Advanced Extravehicular Activity (AEVA), and Advanced Environmental Monitoring and Control (AEMC) programs. This paper presents an overall summary of the workshop that includes workshop organization, objectives, starting assumptions, findings and recommendations. Specific result topics include the identification of knowledge and technology gaps, research and technology development (R&TD) needs, potential forward and back contaminants and pathways, mitigation alternatives, and PP requirements definition needs.
Technical Paper

Simulated Human Feces for Testing Human Waste Processing Technologies in Space Systems

2006-07-17
2006-01-2180
Handling and processing human feces in space habitats is a major concern and needs to be addressed for the Crew Exploration Vehicle (CEV) as well as for future exploration activities. In order to ensure crew health and safety, feces should either be isolated in a dried form to prevent microbial activity, or be processed to yield a non-biohazardous product using a reliable technology. During laboratory testing of new feces processing technologies, use of “real” feces can impede progress due to practical issues such as safety and handling thereby limiting experimental investigations. The availability of a non-hazardous simulant or analogue of feces can overcome this limitation. Use of a simulant can speed up research and ensure a safe laboratory environment. At Ames Research Center, we have undertaken the task of developing human fecal simulants. In field investigations, human feces show wide variations in their chemical/physical composition.
Technical Paper

Modeling of Heat and Mass Transfer in a TEC-Driven Lyophilizer

2006-07-17
2006-01-2185
Dewatering of wet waste during space exploration missions is important for crew safety as it stabilizes the waste. It may also be used to recover water and serve as a preconditioning step for waste compaction. A thermoelectric cooler (TEC)- driven lyophilizer is under development at NASA Ames Research Center for this purpose. It has three major components: (i) an evaporator section where water vapor sublimes from the frozen waste, (ii) a condenser section where this water vapor deposits as ice, and (iii) a TEC section which serves as a heat pump to transfer heat from the condenser to the evaporator. This paper analyses the heat and mass transfer processes in the lyophilizer in an effort to understand the ice formation behavior in the condenser. The analysis is supported by experimental observations of ice formation patterns in two different condenser units.
Technical Paper

Lyophilization for Water Recovery III, System Design

2005-07-11
2005-01-3084
Mixed liquid/solid wastes, including feces, water processor effluents, and food waste, can be lyophilized (freeze-dried) to recover the water they contain and stabilize the solids that remain. Our previous research has demonstrated the potential benefits of using thermoelectric heat pumps to build a lyophilizer for processing waste in microgravity. These results were used to build a working prototype suitable for ground-based human testing. This paper describes the prototype design and presents results of functional and performance tests.
Technical Paper

Influence of Planetary Protection Guidelines on Waste Management Operations

2005-07-11
2005-01-3097
Newly outlined missions in the Vision for U.S. Space Exploration include extended human habitation on Mars. During these missions, large amounts of waste materials will be generated in solid, liquid and gaseous form. Returning these wastes to Earth will be extremely costly, and increase the opportunity for back contamination. Therefore, it is advantageous to investigate the potential for wastes to remain on Mars after mission completion. Untreated, these wastes are a reservoir of live/dead organisms and molecules considered “biomarkers” (i.e., indicators of life). If released to the planetary surface, these materials can potentially interfere with exobiology studies, disrupt any existent martian ecology and pose human safety concerns. Waste Management (WM) systems must therefore be specifically designed to control release of problematic materials both during the active phase of the mission, and for any specified post-mission duration.
Technical Paper

Lyophilization for Water Recovery II, Model Validation

2004-07-19
2004-01-2377
This paper presents results of research on a solid waste dryer, based of the process of lyophilization, which recovers water and stabilizes solid waste. A lyophilizer has been developed and tested that uses thermoelectric heat pumps (TECs) to recycle heat during drying. The properties of TECs facilitate direct measurement of heat flow rates, and heat flow data are used to evaluate a heat and mass transfer model of the thermoelectric lyophilizer. Data are consistent with the theoretical model in most respects. Practical problems such as insulation and vacuum maintenance are minor in this system. However, the model’s assumption of a uniformly retreating ice layer during drying is valid only for the first 30% of water removed. Beyond this point, a shrinking core or lens model is more appropriate. Heat transfer to the shrinking core surrounded by dried material is slow.
Technical Paper

Architecture and Functionality of the Advanced Life Support On-Line Project Information System

2004-07-19
2004-01-2365
An ongoing effort is underway at NASA Ames Research Center (ARC) to develop an On-line Project Information System (OPIS) for the Advanced Life Support (ALS) Program. The objective of this three-year project is to develop, test, revise and deploy OPIS to enhance the quality of decision-making metrics and attainment of Program goals through improved knowledge sharing. OPIS will centrally locate detailed project information solicited from investigators on an annual basis and make it readily accessible by the ALS Community via a Web-accessible interface. The data will be stored in an object-oriented relational database (created in MySQL®) located on a secure server at NASA ARC. OPIS will simultaneously serve several functions, including being an research and technology development (R&TD) status information hub that can potentially serve as the primary annual reporting mechanism for ALS-funded projects.
Technical Paper

Preliminary Study of Greenhouse Grown Swiss Chard in Mixtures of Compost and Mars Regolith Simulant

1999-07-12
1999-01-2021
The growth of Swiss chard in compost, Mars regolith simulant, and mixtures thereof, was studied for application in Advanced Life Support (ALS) systems, particularly Mars/lunar based operations. The purpose was to begin characterizing a sustainable biomass production method based on compost derived from inedible biomass. Compost would serve both as a means of recycling plant nutrients while improving the physical qualities of regolith as a plant growth medium. An outpost’s cropping area could be expanded by blending a minimal amount of compost (scarce, initially imported resource) and a maximal amount of regolith (plentiful local resource), consistent with adequate crop yields. Swiss chard was selected for the study as it is an ALS crop candidate for which there are little data.
Journal Article

Waste Management Technology and the Drivers for Space Missions

2008-06-29
2008-01-2047
Since the mid 1980s, NASA has developed advanced waste management technologies that collect and process waste. These technologies include incineration, hydrothermal oxidation, pyrolysis, electrochemical oxidation, activated carbon production, brine dewatering, slurry bioreactor oxidation, composting, NOx control, compaction, and waste collection. Some of these technologies recover resources such as water, oxygen, nitrogen, carbon dioxide, carbon, fuels, and nutrients. Other technologies such as the Waste Collection System (WCS - the commode) collect waste for storage or processing. The need for waste processing varies greatly depending upon the mission scenario. This paper reviews the waste management technology development activities conducted by NASA since the mid 1980s and explores the drivers that determine the application of these technologies to future missions.
X