Refine Your Search

Topic

Search Results

Technical Paper

A Fundamental Study on Ignition Characteristics of Two-Component Fuel in a Diesel Spray

2006-10-16
2006-01-3383
The authors have explored the potential of fuel to control spray and its combustion processes in a diesel engine. Fuel has some potential for low emission and high thermal efficiency because its volatility and ignitability are one of the ultimate performing factors of the engines. In present study, the ignition process of mixed fuel spray was investigated in a constant volume combustion vessel and in a rapid compression and expansion machine, The ignition delay based on the diagram of rate of the heat release, the imaging of natural flame emissions and the numerical simulation were carried out to clarify the effect of the physical and chemical properties of mixed fuel on ignition characteristics.
Technical Paper

Effect of Initial Fuel Temperature on Spray Characteristics of Multicomponent Fuel

2020-09-15
2020-01-2113
Fuel design concept has been proposed for low emission and combustion control in engine systems. In this concept, the multicomponent fuels, which are mixed with a high volatility fuel (gasoline or gaseous fuel components) and a low volatility fuel (gas oil or fuel oil components), are used for artificial control of fuel properties. In addition, these multicomponent fuels can easily lead to flash boiling which promote atomization and vaporization in the spray process. In order to understand atomization and vaporization process of multicomponent fuels in detail, the model for flash boiling spray of multicomponent fuel have been constructed and implemented into KIVA3V rel.2. This model considers the detailed physical properties and evaporation process of multicomponent fuel and the bubble nucleation, growth and disruption in a nozzle orifice and injected fuel droplets.
Technical Paper

Characteristics of Transient Gas Diffusion Flame

1997-10-01
972965
CNG is one of the future fuel for a CI engine. Recently, the general tendency is the use of the high pressure injection system over 100 MPa in a CI engine for the near future severe regulation. Combustion phenomenon in a CI engine with such injection system is like a transient gas diffusion flame. The flow in a gas diffusion flame was investigated by the particle image velocimetry on its 2-D images, the relative soot concentration, the temperature and the relative CO2 concentration was detected in the experiments. And the model of transient gas diffusion flame was constructed by use of experimental data.
Technical Paper

The structure analysis of diesel free spray with phase change~(Effect of viscosity change of vapor-phase fuel on the structure of diesel free spray)

2000-06-12
2000-05-0100
In this study, the purpose is placed in analysis the structure of diesel spray and, especially, making clear the mixture formation process in the evaporative diesel spray. The liquid fuel was injected from a single-hole nozzle (1/d = 1.0 mm/0.2 mm) into a constant-volume vessel possessing phenomena visualization under high pressure and temperature field. As for measurement method, in order to investigate liquid and vapor-phase of injected spray, exciplex fluorescence method was applied in the evaporative fuel spray. And the interested view region in injected spray is the downstream spray. For the minute investigation of spray flow, the liquid and vapor-phase region is taken with 35 mm still camera and CCD camera, respectively.
Technical Paper

Effect of Breakup Model on Diesel Spray Structure Simulated by Large Eddy Simulation

2009-09-13
2009-24-0024
LES of non-evaporative diesel spray have been performed to investigate the effects of breakup models of Modified TAB, WAVE and KHRT model on computational results. KIVALES that is LES version of KIVA code was used for base code. In our KIVALES, CIP scheme was incorporated in order to suppress the numerical diffusion. Results showed that the breakup model is significantly affected on the calculated spray shape, because the droplet diameter determined by breakup models affects on the transmittance of the droplet momentum into the ambient gas, the evolution of the vortex structure in the gas phase and the droplet dispersion by the vortex structure.
Technical Paper

Vaporization Characteristics and Liquid-Phase Penetration for Multi-Component Fuels

2004-03-08
2004-01-0529
The maximum liquid-phase penetration and vaporization behavior was investigated by using simultaneous measurement for mie-scattered light images and shadowgraph ones. The objective of this study was to analyze effect of variant parameters (injection pressure, ambient gas condition and fuel temperature) and fuel properties on vaporization behavior, and to investigate liquid phase penetration for the single- and multi-component fuels. The experiments were conducted in a constant-volume vessel with optical access. Fuel was injected into the vessel with electronically controlled common rail injector.
Technical Paper

Detailed Kinetic Modeling and Laser Diagnostics of Soot Formation Process in Diesel Jet Flame

2004-03-08
2004-01-1398
This work investigates the soot formation process in diesel jet flame using a detailed kinetic soot model implemented into the KIVA-3V multidimensional CFD code and 2D imaging by use of time-resolved laser induced incandescence (LII). The numerical model is based on the KIVA code which is modified to use CHEMKIN as the chemistry solver using Message Passing Interface (MPI). This allows for the chemical reactions to be simulated in parallel on multiple CPUs. The detailed soot model used is based on the method of moments, which begins with fuel pyrolysis, followed by the formation of polycyclic aromatic hydrocarbons, their growth and coagulation into spherical particles, and finally, surface growth and oxidation of the particles. The model can describe the spatial and temporal characteristics of soot formation processes such as soot precursors distributions, nucleation rate and surface reaction rate.
Technical Paper

Analysis of Diesel Spray Structure by Using a Hybrid Model of TAB Breakup Model and Vortex Method

2001-03-05
2001-01-1240
This study proposes a hybrid model which consists of modified TAB(Taylor Analogy Breakup) model and DVM(Discrete Vortex Method). In this study, the simulation process is divided into three steps. The first step is to analyze the breakup of droplet of injected fuel by using modified TAB model. The second step based on the theory of Siebers' liquid length is analysis of spray evaporation. The liquid length analysis of injected fuel is used for connecting both modified TAB model and DVM. The final step is to reproduce the ambient gas flow and inner vortex flow injected fuel by using DVM. In order to examine the hybrid model, an experiment of a free evaporating fuel spray at early injection stage of in-cylinder like conditions had been executed. The numerical results calculated by using the present hybrid model are compared with the experimental ones.
Technical Paper

The Effect of Fuel-Vapor Concentration on the Process of Initial Combustion and Soot Formation in a DI Diesel Engine Using LII and LIEF

2001-03-05
2001-01-1255
A phenomenological or empirical model based on experimental results obtained from various optical measurements is critical for the understanding of DI diesel combustion phenomena as well as for the improvement of its emission characteristics. Such a model could be realized by the application of advanced optical measurement, which is able to isolate a particular phenomenon amongst complicated physical and chemical interactions, to a DI diesel combustion field. The authors have conducted experimental studies to clarify the combustion characteristics of unsteady turbulent diffusion flames in relation to the soot formation and oxidation process in a small-sized DI diesel engine. In the present study, the effect of fuel vapor concentration on the process of early combustion and soot formation has been investigated using several optical measurements.
Technical Paper

Detailed Chemical Kinetic Modeling of Diesel Spray Combustion with Oxygenated Fuels

2001-03-05
2001-01-1262
This paper confirms a structure for the soot formation process inside a burning diesel jet plume of oxygenated fuels. An explanation of how the soot formation process changes by the use of oxygenated fuel in comparison with that for using a conventional diesel fuel, and why oxygenated fuel drastically suppresses the soot formation has been derived from the chemical kinetic analysis. A detailed chemical kinetic mechanism, which is combined with various proposed chemical kinetic models including normal paraffinic hydrocarbon oxidation, oxygenated hydrocarbon oxidation, and poly-aromatic hydrocarbon (PAH) formation, was developed in present study. The calculated results are presented to elucidate the influence of fuel mixture composition and fuel structure, especially relating to oxygenated fuels, on PAH formation. The analysis also provides a new insight into the initial soot formation process in terms of the temperature range of PAH formation.
Technical Paper

Fundamental Study of Single Droplet and Droplets Array Combustion with Premixed Gas

2002-03-04
2002-01-0648
In the actual spray combustion fields, coupled combustion process should be occurred, between the pre-evaporate fuel component and remaining liquid droplets. Therefore it is insufficient to clarify the fundamental spray combustion mechanism with use of only droplet or only premixed mixture analyze method. In this study, the premixed mixture - droplets coupled combustion field was focused as a model of the actual spray combustion field. In the experiments, the effect of the flame pattern and the combustion rate constant by the interference between the droplets were clarified with the variation of fuels used by droplets. Besides, the effect of the premixed gas surrounding the droplets was clarified by the experiment on coupled combustion. The experiments were carried out under the normal gravity field and the micro gravity field to estimate the effect of convection in combustion field
Technical Paper

Effects of Ambient Gas Conditions on Ignition and Combustion Process of Oxygenated Fuel Sprays

2003-05-19
2003-01-1790
This work presents the ignition delay time characteristics of oxygenated fuel sprays under simulated diesel engine conditions. A constant volume combustion vessel is used for the experiments. The fuels used in the experiments were three oxygenated fuels: diethylene glycol dibutyl ether, diethylene glycol diethyl ether, and diethylene glycol dimethyl ether. JIS 2nd class gas oil was used as the reference fuel. The ambient gas temperature and oxygen concentration were ranging from 700 to 1100K and from 21 to 9%, respectively. The results show that the ignition delay of each oxygenated fuel tested in this experiments exhibits shorter than that of gas oil fuel for the wide range of ambient gas conditions. Also, NTC (negative temperature coefficient) behavior which appears under shock tube experiment for homogenous fuel-air mixture was observed on low ambient gas oxygen concentration for each fuel. And at the condition, the ignition behavior exhibits two-stage phase.
Technical Paper

Combustion in a Small DI Diesel Engine at Starting

1992-02-01
920697
It is unavoidable that a DI diesel engine exhausts a blue and white smoke at starting, especially in the cold atmosphere. In the experiments presented here, a small DI diesel engine started under the conditions of coolant and suction air whose minimum temperatures were 255 K and 268 K, respectively. The flame was photographed by high-speed photography, the temperature of flame and the soot concentration were measured by two-color method, and CO2 concentration was detected by luminous method. The engine cannot be started over several cycles when the coolant temperature is 255 K and suction air temperature is 268 K. As the temperature of coolant and suction air are decreasing, the maxima of the cylinder pressure, the flame temperature, the soot concentration and CO2 concentration are decreasing. Luminous small dots or small lumps of flame become scattered in the piston cavity.
Technical Paper

Characteristics of Combustion in an IDI Diesel Engine with a Swirl Chamber Made of Ceramics

1992-02-01
920696
There is a concept that the increase in the temperature of charge in a combustion chamber and the shield of heat transferred through a chamber wall can facilitate the oxidation of soot and reduce the discharge of soot from the engine. In the experiments presented here in, an IDI diesel engine was used to inspect the concept. The engine was installed a bigger sized cylindrical swirl chamber which was equipped with two flat quarts windows, in order to observe the combustion phenomena and to apply the optical measurement. The experiments were carried out using two types of divided chambers, that is, the swirl chamber made of ceramics and that made of steel, to examine the the effects mentioned above.
Technical Paper

Reduction of Reaction Mechanism for n-Tridecane Based on Knowledge of Detailed Reaction Paths

2016-10-17
2016-01-2238
n-Tridecane is a low boiling point component of gas oil, and has been used as a single-component fuel for diesel spray and combustion experiments. However, no reduced chemical kinetic mechanisms for n-tridecane have been presented for three-dimensional modeling. A detailed mechanism developed by KUCRS (Knowledge-basing Utilities for Complex Reaction Systems), contains 1493 chemical species and 3641 reactions. Reaction paths during ignition process for n-tridecane in air computed using the detailed mechanism, were analyzed with the equivalence ratio of 0.75 and the initial temperatures of 650 K, 850 K, and 1100 K, which are located in the cool-flame dominant, negative-temperature coefficient, and blue-flame dominant regions, respectively.
Technical Paper

Large Eddy Simulation of Non-Evaporative and Evaporative Diesel Spray in Constant Volume Vessel by Use of KIVALES

2006-10-16
2006-01-3334
Large Eddy Simulation (LES) is applied to non-evaporative and evaporative diesel spray simulations. KIVALES, which is LES version of KIVA code, is used as the LES computational code. Modified TAB model is used as breakup model, and interpolated donor cell differencing scheme is employed to calculate convective terms. To validity LES simulation, LES results using KIVALES are compared with experimental results and simulated results with conventional RANS approach using KIVA3V res.2. The results show that the LES simulation of non-evaporative spray depends on the grid size in comparison with RANS simulation, and good agreement is obtained between experimental results and the LES results with fine grid (720,000 cells). Furthermore, asymmetric non-evaporative spray which has intermittency at the outer edge of sprays is simulated, since instantaneous turbulent flow field can be predicted directly in LES case.
Technical Paper

Visualization of the Cavitating Flow inside the Nozzle Hole Using by Enlarged Acrylic Nozzle

2011-08-30
2011-01-2062
In this study, it is purpose to make clear the effect of cavitation phenomenon on the spray atomization. In this report, the cavitation phenomenon inside the nozzle hole was visualized and the pressure measurements along the wall of the nozzle hole were carried out by use of 25-times enlarged acrylic nozzle. For the representatives of regular gasoline, single and two-component fuels were used as a test fuel. In addition, various cavitating flow patterns same as experimental conditions were simulated by use of Barotropic model incorporated in commercial code of Star-CD scheme, and compared with experimental results.
Technical Paper

Chemical Kinetics Study on Ignition Characteristics of Biodiesel Surrogates

2011-08-30
2011-01-1926
Methyl butanoate (MB) and methyl decanoate (MD) are surrogates for biodiesel fuels. According to computational results with their detailed reaction mechanisms, MB and MD indicate shorter ignition delays than long alkanes such as n-heptane and n-dodecane do at an initial temperature over 1000 K. The high ignitability of these methyl esters was computationally analyzed by means of contribution matrices proposed by some of the authors. Due to the high acidity of an α-H atom in a carbonyl compound, hydroperoxy radicals are generated out of the equilibrium between forward and backward reactions of O₂ addition to methyl ester radicals by the internal transfer of an α-H atom in the initial stage of an ignition process. Some of the hydroperoxy methyl ester radicals can generate OH to activate initial reactions. MB has an efficient CH₃O formation path via CH₃ generated by the β-scission of an MB radical which has a radical site on the α-C atom to the carbonyl group.
Technical Paper

Flow Characteristics in Transient Gas Jet

1995-02-01
950847
The combustion of a diesel spray includes very complex processes, that is, atomization, evaporation, diffusion, turbulent mixing and burning. On the other hand, there are no phenomena of atomization and evaporation in the combustion of a transient gas jet. However, the latter jet can be treated as a fundamental of the former spray. From the standpoint mentioned above, acetylene gas was injected into the ambient during short duration as a transient gas jet and its flow characteristics were investigated by means of photography with a sheet of laser light and LDV to detect the turbulent vortex generated in the boundary layer between it and surroundings, in the experiments presented here. And the experimental results show that the jet itself is divided into four peculiar regions and the modelling of each region is carried out by use of the results to understand the mixture formation process owing to the turbulent diffusive mixing.
Technical Paper

Organized Structure and Motion in Diesel Spray

1997-02-24
970641
This paper deals with the particle distribution in Diesel spray under the non-evaporating condition from the analytical aspect based on our experimental results. In the analysis, TAB method of KIVA II code and the k-ε turbulent model were used, and the mono-disperse distribution of the initial parcel's diameter, whose size equals to the nozzle hole diameter, was utilized in conjunction with the breakup model. The size distribution of atomized droplets (i.e. the χ-squared distribution function) is justified with the degree of freedom. It is shown that the ambient gas, which is initially quiescent, is induced and led to a turbulent gas jet. The turbulent gas jet which has a equivalent momentum with the Diesel spray was also examined by Discrete Vortex method. The quantitative jet growth was shown to be possible for the estimation and determination in its initial boundary values at the nozzle.
X