Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Experimental and Numerical Studies on Particulate Matter Formed in Fuel Rich Mixture

2003-10-27
2003-01-3175
Experimental and numerical studies on PAHs (Polycyclic Aromatic Hydrocarbons) and PM (Particulate Matters) formed in the fuel rich mixture have been conducted. In the experiment, neat n-heptane and n-heptane with benzene 25 % by weight were chosen as test fuels. In-cylinder gases produced by the fuel-rich HCCI (Homogeneous Charge Compression Ignition) combustion were directly sampled and analyzed by the use of GC/MS (Gas Chromatograph/Mass Spectro- metry), and PM emission was also measured by PM sampling system to reveal characteristics of PM formation. Numerical study has been also carried out using a zero dimensional combustion model combined with detailed chemistry. Furthermore, simple surface growth of soot particles was integrated into a detailed chemical kinetic model, and validated with the experimental data.
Technical Paper

Experimental and Numerical Studies on Soot Formation in Fuel Rich Mixture

2003-05-19
2003-01-1850
Experimental and numerical studies are conducted on the formation of soot and Polycyclic Aromatic Hydrocarbons (PAHs), regarded as precursors of soot, during the combustion of fuel-rich homogeneous n-heptane mixtures. In-cylinder gases are sampled directly through a high-speed solenoid valve in engine tests, to be analyzed by GC/MS for qualifying PAHs. Smoke concentration is also measured. A numerical study is carried out by using a zero-dimensional model combined with detailed chemical kinetics. The experiments and computations show that PAHs can be predicted qualitatively by means of the present kinetic model.
Technical Paper

A Quasi Two Dimensional Model of Transport Phenomena in Diesel Particulate Filters - The Effects of Particle Diameter on the Pressure Drop in DPF Regeneration Mode-

2016-10-17
2016-01-2282
Experimental and numerical studies on the combustion of the particulate matter in the diesel particulate filter with the particulate matter loaded under different particulate matter loading condition were carried out. It was observed that the pressure losses through diesel particulate filter loaded with particulate matter having different mean aggregate particle diameters during both particulate matter loading and combustion periods. Diesel particulate filter regeneration mode was controlled with introducing a hot gas created in Diesel Oxidation Catalyst that oxidized hydrocarbon injected by a fuel injector placed on an exhaust gas pipe. The combustion amount was calculated with using a total diesel particulate filter weight measured by the weight meter both before and after the particulate matter regeneration event.
Technical Paper

Combined Effects of EGR and Supercharging on Diesel Combustion and Emissions

1993-03-01
930601
An experimental study has been made of a single cylinder, direct-injection diesel engine having a re-entrant combustion chamber designed to enhance combustion so as to reduce exhaust emissions. Special emphasis has been placed on controlling the inert gas concentration in the localized fuel-air mixture to lower combustion gas temperatures, thereby reduce exhaust NOx emission. For this specific purpose, an exhaust gas recirculation (EGR) system, which has been widely used in gasoline engines, was applied to the DI diesel engine to control the intake inert gas concentration. In addition, supercharging and increasing fuel injection pressure prevent the deterioration of smoke and unburned hydrocarbons and improve fuel economy, as well.
Technical Paper

Intercooling Effects of Methanol on Turbocharged Diesel Engine Performance and Exhaust Emissions

1984-09-01
841160
From the viewpoint of utilizing methanol fuel in an automotive turbocharged direct-injection diesel engine, an intercooling system supplying liquid methanol has been devised and its effects on engine performance and exhaust gas emissions have been investigated. With an electronically controlled injector in this system, methanol as a supplementary fuel to diesel fuel can be injected into the intake pipe in order to intercool a hot air charge compressed by the turbocharger. It has been confirmed that especially at heavy load conditions, methanol-intercooling can yield a higher thermal efficiency, and lower NOx and smoke emissions simultaneously, compared with three other cases without using methanol: natural aspiration and the cases with and without an ordinary intercooler. However, methanol fueling must be avoided at lower loads since sacrifices in efficiency and hydrocarbon emissions are inevitably involved.
Technical Paper

Numerical Simulation on Soot Formation in Diesel Combustion by Using a CFD Code Combined with a Parallelized Explicit ODE Solver

2014-10-13
2014-01-2567
The objective of the present study is to analyze soot formation in diesel engine combustion by using multi-dimensional combustion simulations with a parallelized explicit ODE solver. Parallelized CHEMEQ2 was used to perform detailed chemical kinetics in KIVA-4 code. CHEMEQ2 is an explicit stiff ODE solver developed by Mott et al. which is known to be faster than traditional implicit ODE solvers, e.g., DVODE. In the present study, about eight times faster computation was achieved with CHEMEQ2 compared to DVODE when using a single thread. Further, by parallelizing CHEMEQ2 using OpenMP, the simulations could be run not only on calculation servers but also on desktop machines. The computation time decreases with the number of threads used. The parallelized CHEMEQ2 enabled combustion and emission characteristics, including detailed soot formation processes, to be predicted using KIVA-4 code with detailed chemical kinetics without the need for reducing the reaction mechanism.
Technical Paper

A Numerical Study on the Effects of FAME Blends on Diesel Spray and Soot Formation by Using KIVA3V Code Including Detailed Kinetics and Phenomenological Soot Formation Models

2014-10-13
2014-01-2653
The objective of the present research was to analyze the effects of using oxygenated fuels (FAMEs or biodiesel fuels) on injected fuel spray and soot formation. A 3-D numerical study which using the KIVA-3V code with modified chemical and physical models was conducted. The large-eddy simulation (LES) model and KH-RT model were used to simulate fuel spray characteristics. To predict soot formation processes, a model for predicting gas-phase polycyclic aromatic hydrocarbons (PAHs) precursor formation was coupled with a detailed phenomenological particle formation model that included soot nucleation from the precursors, surface growth/oxidation and particle coagulation. The calculated liquid spray penetration results for all fuels agreed well with the measured data. The spray measurements were conducted using a constant volume chamber (CVC), which can simulate the ambient temperature and density under real engine conditions.
X