Refine Your Search

Search Results

Viewing 1 to 8 of 8
Journal Article

Tribological Evaluation of Biobased Lubricant Basestocks from Cottonseed and Soybean Oils

2010-05-05
2010-01-1545
The aim of this study was to synthesize environmentally adapted Trimethylolpropane (TMP) esters from cottonseed and soybean oils and to examine their quality parameters and tribological properties as potential lubricant basestocks. A two stage production process was followed. At first the above mentioned vegetable oils were transformed to the corresponding methyl esters via methanolysis in the presence of sodium methoxide. The desired TMP esters were finally synthesized by alkaline transesterification of the previously produced methylesters with TMP using sodium methoxide as catalyst. Following the purification phase the physicochemical characteristics of the synthesized TMP esters were examined. The tribological properties were evaluated by employing a Four-Ball apparatus. An additive-free mineral oil base oil was used as a reference lubricating fluid.
Journal Article

Microbiological Growth Study of Biodiesel Fuel

2013-04-08
2013-01-1148
The diesel fuel supply chain faces new challenges associated with microbial contamination symptoms in biodiesel fuel. FAME's (Fatty Acid Methyl Esters) chemical composition along with its hygroscopic nature makes it more “biologically active” and as a result the final blends could be more prone to microbiological contamination. Survey of in-field incidents and facts in the Greek supply chain indicate that biodiesel is more prone to microbial growth. Furthermore, several experimental studies which demonstrate the susceptibility of biodiesel fuel for microbial growth have been conducted in the laboratory. The influence of FAME has been evaluated as well as the effect of microbial proliferation on the quality of the blend. Different types of biodiesel have been blended with Ultra Low Sulphur Diesel at various concentrations, and the resulting blends were mixed with bottom-water of known viable microbial colonies and stored.
Technical Paper

A Study on Microbial Contamination of Alcohol-Blended Unleaded Gasoline

2016-10-17
2016-01-2259
The fuel supply chain faces challenges associated with microbial contamination symptoms. Microbial growth is an issue usually known to be associated with middle distillate fuels and biodiesel, however, incidents where microbial populations have been isolated from unleaded gasoline storage tanks have also been recently reported. Alcohols are employed as gasoline components and the use of these oxygenates is rising, especially ethanol, which can be a renewable alternative to gasoline, as well. Despite their alleged disinfectant properties, a number of field observations suggests that biodeterioration could be a potential issue in fuel systems handling ethanol-blended gasoline. For this reason, in this study, the effect of alcohols on microbial proliferation in unleaded gasoline fuel was assessed. Ethanol (EtOH), iso-propyl alcohol (IPA) and tert-butyl-alcohol (TBA) were evaluated as examples of alcohols utilized in gasoline as oxygenates.
Technical Paper

Effect of Phenolic Type Antioxidant Additives on Microbial Stability of Biodiesel Fuel

2017-10-08
2017-01-2334
The aim of this study was to investigate the effect of a variety of phenolic type antioxidant additives on the microbial stability of biodiesel and diesel/biodiesel blends. Six synthetic phenolic type antioxidant agents were added in FAME at concentrations up to 1000 ppm. Treated FAME was also blended with Ultra Low Sulfur Diesel (ULSD) fuel at a concentration of 7% v/v in order to examine the activity of the substances in the final blends. The oxidation stability in the presence of the phenolic compounds was determined by carrying out measurements under accelerated oxidation process in the Rancimat unit. The effectiveness of those antioxidant agents against microbial contamination in biodiesel fuel was studied under certain testing protocols for detecting microbiological activity in the fuel supply chain and for evaluating antimicrobials against fuel bio-deterioration.
Technical Paper

Production of Biobased Lubricant Basestocks with Improved Performance

2012-09-10
2012-01-1620
The ability of a catalyst to enhance the performance of synthesized biobased lubricant basestock was investigated in this study. Pomace olive oil, cottonseed oil, used frying oil and methyl oleate were utilized as starting materials for the production of the biobased lubricants and a two stages transesterification methodology was followed. Initially the oils were converted to their corresponding fatty acid methyl esters via methanolysis. The resulting methylesters were subsequently transesterified with TMP producing the desired oleochemical ester. These syntheses were carried out in the presence of either sodium methoxide or Ca/TEA alkoxide as catalysts. Following the purification phase, the synthesized esters were evaluated as potential biolubricants regarding their physicochemical properties such as viscosity index, pour point and acid value.
Technical Paper

A Study on the Performance of Lubricating Greases for Electric and Hybrid Vehicle Applications

2022-08-30
2022-01-1105
The automotive sector has always been closely connected with the lubricants industry, with the latter continuously developing new technologies, specs and products in order to address the evolution in this segment. Electrification represents a significant change in the major powertrains and, thus, it will inevitably affect the selection, development and market share of several types of lubricants, such as lubricating greases. The evolution of the EV/HV segment will increase the demand and the importance of lubricating greases for electric motors. New challenges for grease formulation may arise from the neighboring electric currents and electromagnetic fields and higher energy efficiency requirements. In this paper, the perspectives and the projected evolution of automotive e-mobility is reported and the subsequent influence on the main grease performance requirements are analyzed. Moreover, the alteration in the applications are examined.
Technical Paper

Oxidation Stability Study of Biobased Lubricant Basestocks

2015-09-01
2015-01-2046
One of the concerns for biolubricants is the improvement of their oxidation resistance. In this paper the oxidative behavior of seven different types of biobased lubricants basestocks is examined. The aim was to study their relative oxidation stability and also to investigate their response to various antioxidants. The renewable lubricants were treated with four antioxidant additives at a concentration of 0.5% wt. and a comparative assessments of the latters' effectiveness in suppressing the oxidation rate was carried out. Alterations in the acid value were examined as well as relative changes of the oxidized samples by FTIR spectroscopy. The oxidation stability was assessed by employing a Rapid Small Scale Oxidation Test (RSSOT) apparatus according to the accelerated oxidation stability standard method ASTM D7545/EN16091. RSSOT is a relatively new method and thus the behaviour of biobased lubricants and antioxidant agents in this accelerated method has not been thoroughly examined.
Technical Paper

Low Temperature Performance of Novel Electric Vehicle Motor Lubricating Greases

2023-10-31
2023-01-1653
In this study the main focus is on the low temperature behavior and mobility of lubricating greases; a characteristic that has always been challenging for grease formulators. A series of lab-scale polyurea grease samples are prepared, with three different types of low viscosity synthetic base oils (ISO VG 32), and are examined in terms of their low temperature behavior as potential lubricants for electric motor bearings of electric vehicles (EVs) and hybrid electric vehicles (HEVs). The cold flow properties are analyzed by utilizing a Low Temperature Flow Tester following the DIN 51805-2 (Determination of flow pressure of lubricating greases according to Kesternich method) standard. The test matrix includes the cold flow pressure assessment at various temperatures ranging from -0oC to -40oC, whereas those measurements are also repeated after various relaxation periods - at selected temperatures - from 4h up to 8h before the actual determination.
X