Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Effects of Direct Injection Timing and Air Dilution on the Combustion and Emissions Characteristics of Stratified Flame Ignited (SFI) Hybrid Combustion in a 4-Stroke PFI/DI Gasoline Engine

2020-04-14
2020-01-1139
Controlled Auto-Ignition (CAI) combustion can effectively improve the thermal efficiency of conventional spark ignition (SI) gasoline engines, due to shortened combustion processes caused by multi-point auto-ignition. However, its commercial application is limited by the difficulties in controlling ignition timing and violent heat release process at high loads. Stratified flame ignited (SFI) hybrid combustion, a concept in which rich mixture around spark plug is consumed by flame propagation after spark ignition and the unburned lean mixture closing to cylinder wall auto-ignites in the increasing in-cylinder temperature during flame propagation, was proposed to overcome these challenges.
Technical Paper

Combustion Visualization and Experimental Study on Multi-Point Micro-Flame Ignited (MFI) Hybrid Lean-Burn Combustion in 4-Stroke Gasoline Engines

2020-09-15
2020-01-2070
Lean-burn combustion is an effective method for increasing the thermal efficiency of gasoline engines fueled with stoichiometric fuel-air mixture, but leads to an unacceptable level of high cyclic variability before reaching ultra-low nitrogen oxide (NOx) emissions emitted from conventional gasoline engines. Multi-point micro-flame ignited (MFI) hybrid combustion was proposed to overcome this problem, and can be can be grouped into double-peak type, ramp type and trapezoid type with very low frequency of appearance. This research investigates the micro-flame ignition stages of double-peak type and ramp type MFI combustion captured by high speed photography. The results show that large flame is formed by the fast propagation of multi-point flame occurring in the central zone of the cylinder in the double-peak type. However, the multiple flame sites occur around the cylinder, and then gradually propagate and form a large flame accelerated by the independent small flame in the ramp type.
Technical Paper

Numerical Investigation of Diesel-Spray-Orientated Piston Bowls on Natural Gas and Diesel Dual Fuel Combustion Engine

2020-04-14
2020-01-0311
Low combustion efficiency and high hydrocarbon emissions at low loads are key issues of natural gas and diesel (NG-diesel) dual fuel engines. For better engine performance, two diesel-spray-orientated (DSO) bowls were developed based on the existing diesel injector of a heavy-duty diesel engine with the purpose of placing more combustible natural gas/air mixture around the diesel spray jets. A protrusion-ring was designed at the rim of the piston bowl to enhance the in-cylinder flame propagation. Numerical simulations were conducted for a whole engine cycle at engine speed of 1200 r/min and indicated mean effective pressure (IMEP) of 0.6 MPa. Extended coherent flame model 3 zones (ECFM-3Z) combustion model with built-in soot emissions model was employed. Simulation results of the original piston bowl agreed well with the experimental data, including in-cylinder pressure and heat released rate (HRR), as well as soot and methane emissions.
Technical Paper

Effect of a Split-Injection Strategy on the Atomisation Rate Using a High Pressure Gasoline DI Injector

2020-04-14
2020-01-0322
The Gasoline direct-injection (GDI) engine can emit high levels of particulate matter and unburned Hydrocarbons when operating under stratified charge combustion mode. Injecting late in the compression stroke means the fuel has insufficient time to atomise and evaporate. This could cause fuel film accumulation on the piston surface and combustion liner. Locally fuel rich diffusion combustion could also result in the formation of soot particles. Employing a split-injection strategy can help tackle these issues. The first injection is initiated early in the intake stroke and could ensure a global homogeneous charge. The second injection during the compression stroke could help form a fuel-rich charge in the vicinity of the spark plug. Many studies have established the crucial role that a split-injection strategy plays in the stratified charge operation of GDI engines.
Journal Article

Effect of the Molecular Structure of Individual Fatty Acid Alcohol Esters (Biodiesel) on the Formation of Nox and Particulate Matter in the Diesel Combustion Process

2008-06-23
2008-01-1578
Biodiesel is a renewable fuel which can be used as a direct replacement for fossil Diesel fuel as a calorific source in Diesel Engines. It consists of fatty acid mono-alkyl esters, which are produced by the trans-esterification reaction of plant oils with monohydric alcohols. The Plant oils and alcohols can both be derived from biomass, giving this fuel the potential for a sustainable carbon dioxide neutral life-cycle, which is an important quality with regard to avoiding the net emission of anthropogenic greenhouse gases. Depending on its fatty ester composition, Biodiesel can have varying physical and chemical properties which influence its combustion behaviour in a Diesel engine. It has been observed by many researchers that Biodiesel can sometimes lead to an increase in emissions of oxides of nitrogen (NOx) compared to fossil Diesel fuel, while emitting a lower amount of particulate mass.
Journal Article

Influence of Different Fuel Properties and Gasoline - Ethanol Blends on Low-Speed Pre-Ignition in Turbocharged Direct Injection Spark Ignition Engines

2016-04-05
2016-01-0719
In recent years a new combustion phenomenon called Low-Speed Pre-Ignition (LSPI) occurred, which is the most important limiting factor to exploit further downsizing potential due to the associated peak pressures and thus the huge damage potential. In the past there were already several triggers for pre-ignitions identified, whereat engine oil seems to have an important influence. Other studies have reported that detached oil droplets from the piston crevice volume lead to auto-ignition prior to spark ignition. However, wall wetting and subsequently oil dilution and changes in the oil properties by impinging fuel on the cylinder wall seem to have a significant influence in terms of accumulation and detachment of oil-fuel droplets in the combustion chamber. For this reason, the influence of test fuels with different volatility were investigated in order to verify their influence on wall wetting, detachment and pre-ignition tendency.
Journal Article

The Performance of a Modern Vehicle on a Variety of Alcohol-Gasoline Fuel Blends

2012-04-16
2012-01-1272
An unmodified, conventionally fuelled, 2009 Class D vehicle with a 2.0L turbocharged gasoline direct injection engine was operated on a range of gasoline, gasoline-ethanol and gasoline-butanol fuel blends over NEDC drive cycles and WOT power curves on a chassis dynamometer. Engine performance, engine management system parameters and vehicle out emissions were recorded to investigate the response of a current state-of-the-art technology vehicle to various alcohol fuel blends. The vehicle fired on all fuels and was capable of adapting its long term fuelling trim to cope with the increased fuel flow demand for alcohol fuels up to E85. Over the NEDC tests, the volumetric fuel consumption was very strongly related to the calorific content of the fuel. CO and NOx emissions were largely unaffected for the mid alcohol blends, but CO emissions decreased and NOx emissions increased significantly for the high alcohol fuels. THC emissions were largely unaffected.
Journal Article

Measuring the Impact of Engine Oils and Fuels on Low-Speed Pre-Ignition in Downsized Engines

2014-04-01
2014-01-1219
One of the limits on the maximum fuel efficiency benefit to be gained from turbocharged, downsized gasoline engines is the occurrence of low speed pre-ignition (LSPI). LSPI may lead to high pressures and extreme knock (megaknock or superknock) which can cause severe engine damage. Though the mechanism leading to megaknock is not completely resolved, LSPI is thought to arise from local auto-ignition of areas in the cylinder which are rich in low ignition delay “contaminants” such as engine oil and/or heavy ends of gasoline. These contaminants are introduced to the combustion chamber at various points in the engine cycle (e.g. entering from the top land crevice during blow-down or washed from the cylinder walls during DI wall impingement). This paper describes a method for testing the propensity of different contaminants to cause a local pre-ignition in a gasoline engine. During one cycle, a small amount of contaminant is injected into one cylinder of a 4 cylinder engine.
Technical Paper

The effective use of ethanol for greenhouse gas emissions reduction in a diesel engine

2020-01-13
2019-36-0157
Regulations have been established for the monitoring and reporting of greenhouse gas (GHG) emissions and fuel consumption from the transport sector. Low carbon fuels combined with new powertrain technologies have the potential to provide significant reductions in GHG emissions while decreasing the dependence on fossil fuel. In this study, a lean-burn ethanol-diesel dual-fuel combustion strategy has been used as means to improve upon the efficiency and emissions of a conventional diesel engine. Experiments have been performed on a 2.0 dm3 single cylinder heavy-duty engine equipped with port fuel injection of ethanol and a high-pressure common rail diesel injection system. Exhaust emissions and fuel consumption have been measured at a constant engine speed of 1200 rpm and various steady-state loads between 0.3 and 2.4 MPa net indicated mean effective pressure (IMEP).
Technical Paper

Effects on diesel combustion of the molecular structure of potential synthetic bio-fuel molecules

2007-09-16
2007-24-0125
Synthetic bio-fuels, which can be obtained through the gasification of biomass into synthesis gas and the subsequent catalytic reaction of the synthesis gas into liquid fuel molecules, could play a key-role in providing a sustainable source of automotive fuels during the coming decades. This paper presents an attempt to understand the effect of molecular structure of potential oxygenated synthetic bio-fuel molecules of different structure on the diesel combustion process in both stratified and homogeneous combustion modes. Specifically, the effects of molecular structure on the energy release rates, gaseous exhaust emissions and the sub-micron particulate matter distribution were examined. The experiments were carried out on a single-cylinder direct-injection diesel engine using a specially adapted common-rail fuel-system which allowed the injection of small single-molecule fuel samples at high pressure.
Technical Paper

Effects of EGR on Heat Release in Diesel Combustion

1998-02-23
980184
The effects of Exhaust Gas Recirculation (EGR) on diesel engine exhaust emissions were isolated and studied in earlier investigations (1,2,3,4,5). This paper analyses the heat release patterns during the combustion process and co-relates the results with the exhaust emissions. The EGR effects considered include the dilution of the inlet charge with CO2 or water vapour, the increase in the inlet charge temperature, and the thermal throttling arising from the use of hot EGR. The use of diluents (CO2 and H2O), which are the principal constituents of EGR, caused an increase in ignition delay and a shift in the location of start of combustion. As a consequence of this shift, the whole combustion process was also shifted further towards the expansion stroke. This resulted in the products of combustion spending shorter periods at high temperatures which lowered the NOx formation rate.
Technical Paper

The Effects on Diesel Combustion and Emissions of Reducing Inlet Charge Mass Due to Thermal Throttling with Hot EGR

1998-02-23
980185
This paper is a complementary to previous investigations by the authors (1,2,3,4) on the different effects of EGR on combustion and emissions in DI diesel engine. In addition to the several effects that cold EGR has on combustion and emissions the application of hot EGR results in increasing the inlet charge temperature, thereby, for naturally aspirated engines, lowering the inlet charge mass due to thermal throttling. An associated consequence of thermal throttling is the reduction in the amount of oxygen in the inlet charge. Uncooled EGR, therefore, affects combustion and emissions in two ways: through the reduction in the inlet charge mass and through the increase in inlet charge temperature. The effect on combustion and emissions of increasing the inlet charge temperature (without reducing the inlet charge mass) has been dealt with in ref. (1).
Technical Paper

Improvements of the KIVA Dense Spray Modeling for HSDI Diesel Engines

2007-01-23
2007-01-0001
A numerical study has been performed to investigate the soot emission from a high-speed single-cylinder direct injection diesel engine. It was shown that the current KIVA CFD code with the standard evaporation model could predict the experimental trend, where at a low speed running condition a higher smoke reading is reached when increasing the injector protrusion into the piston chamber and conversely a lower smoke reading was recorded for the same change in injector protrusion at a high running speed condition. Evidence of inappropriate air/fuel mixing was seen via rates of heat release analyses, especially in the high-speed conditions. Efforts to reduce this discrepancy by way of improvements to the KIVA breakup and evaporation models were made. Results of the modified models showed improvements in the vapor dispersion of the atomizing liquid jet, thus affecting the mixing rates and predicted smoke emissions.
Technical Paper

Developing a Fuel Stratification Concept on a Spark Ignition Engines

2007-04-16
2007-01-0476
A fuel stratification concept has been developed in a three-valve twin-spark spark ignition engine. This concept requires that two fuels or fuel components of different octane numbers (ON) be introduced into the cylinder separately through two independent inlet ports. They are then stratified into two regions laterally by a strong tumbling flow and ignited by the spark plug located in each region. This engine can operate in the traditional stratified lean-burn mode at part loads to obtain a good part-load fuel economy as long as one fuel is supplied. At high loads, an improved fuel economy might also be obtained by igniting the low ON fuel first and leaving the high ON fuel in the end gas region to resist knock. This paper gives a detailed description of developing the fuel stratification concept, including optimization of in-cylinder flow, mixture and combustion.
Technical Paper

CAI Combustion with Methanol and Ethanol in an Air-Assisted Direct Injection SI Engine

2008-06-23
2008-01-1673
CAI combustion has the potential to be the most clean combustion technology in internal combustion engines and is being intensively researched. Following the previous research on CAI combustion of gasoline fuel, systematic investigation is being carried out on the application of bio-fuels in CAI combustion. As part of an on-going research project, CAI combustion of methanol and ethanol was studied on a single-cylinder direct gasoline engine with an air-assisted injector. The CAI combustion was achieved by trapping part of burnt gas within the cylinder through using short-duration camshafts and early closure of the exhaust valves. During the experiment the engine speed was varied from 1200rpm to 2100rpm and the air/fuel ratio was altered from the stoichiometry to the misfire limit. Their combustion characteristics were obtained by analysing cylinder pressure trace.
Technical Paper

In-cylinder Studies of Fuel Injection and Combustion from a Narrow Cone Fuel Injector in a High Speed Single Cylinder Optical Engine

2008-06-23
2008-01-1789
Over the last decade, the high speed direct injection (HSDI) diesel engine has made dramatic progress in both its performance and market share in the light duty vehicle market. However, with ever more stringent emission legislation to be introduced over coming years, the simultaneous reduction of NOx and Particulate Matter (PM) from the HSDI diesel engine is being intensively researched. As part of a European Union (EU) NICE integrated project, research has been carried out to investigate the fuel injection and combustion from a narrow cone fuel injector in a high speed direct injection single cylinder engine with optical access utilising a multiple injection strategy and various alternate fuels. The fuel injection process was visualised using a high speed imaging system comprising a copper vapour laser and a high speed video camera. The auto-ignition and combustion process was analysed through the chemiluminescence images of CHO and OH using an intensified CCD camera.
Technical Paper

Experimental Investigation of the Effects of Combined Hydrogen and Diesel Combustion on the Emissions of a HSDI Diesel Engine

2008-06-23
2008-01-1787
The effects of load, speed, exhaust gas recirculation (EGR) level and hydrogen addition level on the emissions from a diesel engine have been investigated. The experiments were performed on a 2.0 litre, 4 cylinder, direct injection engine with a high pressure common-rail injection system. Injection timing was varied between 14° BTDC and TDC and injection pressures were varied from 800 bar to 1400 bar to find a suitable base point. EGR levels were then varied from 0% to 40%. Hydrogen induction was varied between 0 and 6% vol. of the inlet charge. In the case of using hydrogen and EGR, the hydrogen replaced air. The load was varied from 0 to 5.4 bar BMEP at two engine speeds, 1500 rpm and 2500 rpm. For this investigation the carbon monoxide (CO), total unburnt hydrocarbons (THC), nitrogen oxides (NOx) and the filter smoke number (FSN) were all measured.
Technical Paper

Study on Layered Close Loop Control of 4-Stroke Gasoline HCCI Engine Equipped with 4VVAS

2008-04-14
2008-01-0791
Homogeneous Charge Compression Ignition (HCCI) has the potential of reducing fuel consumption as well as NOx emissions. However, it is still confronted with problems in real-time control system and control strategy for the application of HCCI, which are studied in detail in this paper. A CAN-bus-based distributed HCCI control system was designed to implement a layered close loop control for HCCI gasoline engine equipped with 4VVAS. Meanwhile, a layered management strategy was developed to achieve high real-time control as well as to simplify the couplings between the inputs and the outputs. The entire control system was stratified into three layers, which are responsible for load (IMEP) management; combustion phase (CA50) control and mechanical system control respectively, each with its own specified close loop control strategy. The system is outstanding for its explicit configuration, easy actualization and robust performance.
Technical Paper

Experimental Studies of a 4-Stroke Multi-Cylinder Gasoline Engine with Controlled Auto-Ignition (CAI) Combustion

2007-11-28
2007-01-2609
Controlled Auto-Ignition (CAI), also known as HCCI (Homogeneous Charge Compression Ignition), is increasingly seen as a very effective way of lowering both fuel consumption and emissions from gasoline engines. Therefore, it's seen as one of the best ways to meet future engine emissions and CO2 legislations. This combustion concept was achieved in a Ford production, port-injected, 4 cylinder gasoline engine. The only major modification to the original engine was the replacement of the original camshafts by a new set of custom made ones. The CAI operation was accomplished by means of using residual gas trapping made possible by the use of VCT (variable cam timing) on both intake and exhaust camshafts. When running on CAI, the engine was able to achieve CAI combustion with in a load range of 0.5 to 4.5 BMEP, and a speed range of 1000 to 3500 rpm. In addition, spark assisted CAI operation was employed to extend the operational range of low NOx and low pumping loss at part-load conditions.
Technical Paper

Impact of Butanol and Other Bio-Components on the Thermal Efficiency of Prototype and Conventional Engines

2009-06-15
2009-01-1908
A collaborative study to evaluate the maximum achievable thermal efficiency of a spark ignited engine has been conducted using a range of gasoline and advanced biogasoline fuels, including isomers of butanol. Engines used in this study included an Atkinson cycle 1.5l and prototype 1.8l lean boosted engine. This study was the first stage of an objective to establish practical and implementable routes to minimising well-to-wheels CO2 emissions from liquid hydrocarbon fuels in these engines. A fuel matrix was designed to assess the effects of variations in volatility, octane and bio-component level and type. Performance and emissions tests were conducted over a range of engine operating conditions. Thermal efficiency was mapped at stoichiometric and lean conditions, and the limit of lean combustion was established for the different fuels. A maximum steady-state thermal efficiency of 42.9% was achieved on the lean boosted engine.
X