Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Impact of Boundary Lubrication Performance of Engine Oils on Friction at Piston Ring-Cylinder Liner Interface

2014-10-13
2014-01-2787
To explore the measures that can be used to improve the fuel economy of internal combustion engines, we investigated how friction at the piston ring-cylinder liner interface is influenced by the boundary lubrication performance of engine oils. We formulated several engine oils with varying boundary lubrication performance and tested them for ring-liner friction by using a floating liner friction tester. We used friction modifiers (FMs) to modify the boundary lubrication performance of engine oils. We found that ring-liner friction is well correlated with the friction coefficients in boundary lubrication regimes when measured by a laboratory friction tester. We also found that the impact of the boundary lubrication performance of engine oils was emphasized in low viscosity engine oils. It makes it possible for improved boundary lubrication performance to inhibit or overcome the viscosity reduction-induced increase of friction energy.
Technical Paper

Steric Effects on Tribochemical Reactivity in Detergent-Containing Lubricants under Nanoconfinement

2017-10-08
2017-01-2347
Modern formulation in a wide variety of lubricants including engine oils and transmission fluids is designed to control friction through film-forming tribochemical reactions induced by the functional additives mixtures. Although many cases on the synergistic or antagonistic effects of additives on friction have been reported, their mechanisms are poorly understood. This study focused on the influences of metallic detergents on tribochemical reactions. We examined the mechanical properties of detergent-containing lubricants confined at a single-asperity contact and their contributions to tribochemical phenomena. We found that detergents enlarged the confinement space required for generating repulsive force and shear resistance. This means that these detergents provide steric effects under nanoconfinement at interfacial contacts.
Technical Paper

Influence of Zn, Mo, P, S-contained Engine Oil Additives on Abnormal Combustion in a Spark Ignition Engine

2020-01-24
2019-32-0586
A Spark Ignition Engine has some kinds of problem to be solved over many years, one of them is abnormal combustion; Low-speed pre-ignition (LSPI) under low-speed, high-load driving conditions for vehicle, and pre-ignition under longterm operation without cleaning a combustion chamber for gas cogeneration. As a cause for abnormal combustion, engine oil droplets diluted by liquid fuel and peeled combustion deposits delivered from engine oil are proposed. In this study, experiments were conducted focusing on engine oil additives having different chemical structure and abnormal combustion behavior. A four-stroke side-valve single cylinder engine that allowed in-cylinder visualization of the combustion flame was used in the experiments. The experimental results showed that the influence of DTC additive on abnormal combustion is small and the zinc component contained in the DTP additives had the effect of advancing the autoignition timing.
X