Refine Your Search

Topic

Search Results

Training / Education

Materials Degradation in Mechanical Design: Wear, Corrosion, Fatigue, and Their Interactions Web Course RePlay

Anytime
Materials degradation from environmental conditions is a common factor that will often occur in mechanical equipment used in every type of environment. These processes can frequently materialize in unpredicted and harmful ways, especially when they interact and lead to early component damage or failure. Captured from five, two-hour sessions, this course summarizes the mechanisms that cause materials and mechanical components to degrade in service through exposure to deleterious mechanical and environmental conditions.
Training / Education

Metals Bundle

Anytime
Almost 75% of all elements are metals. Metals can be classified as either ferrous or non-ferrous and generally conduct electricity and heat well. Most metals are malleable and ductile and are, in general, heavier than other elemental substances. The following six eLearning courses are included in the Materials bundle. Each course is approximately one-hour in duration. See topics/outline for additional details. Introduction to Metals, Ferrous Metals, Nonferrous Metals, Classification of Steel, Essentials of Heat Treatment of Steel Exotic Alloys
Training / Education

Aluminum Metallurgy

Anytime
There are a wide variety of wrought aluminum alloys, each developed to provide specific properties. Getting the strength participants need in an aluminum alloy requires knowledge of the effects of alloy composition, cold-working, and heat treating on aluminum metallurgy and properties. A good understanding of how aluminum alloys behave and what can be done to modify their properties is critical for being more productive and profitable. The course takes about one hour to complete and consists of one module and a final exam. Also, quizzes and problems provide participants opportunities to apply the concepts taught.
Training / Education

Metallurgy of Steel: Principles

Anytime
Getting the strength and hardness you need in your steel requires knowledge of the effects of alloy composition and heat treating on steel properties. With knowledge of steel metallurgy you’ll be better able to: Select the most appropriate alloy and heat treating process for your application Evaluate suppliers Develop manufacturing processes Solve quality problems A good understanding of what can be done to modify the properties of steel is critical for being more productive and profitable.
Training / Education

Ferrous Metals Bundle: Steel and Cast Iron

Anytime
Ferrous metals contain iron and are prized for their tensile strength and durability. Most are magnetic and contain a high carbon content which generally makes them, with the exception of wrought iron and stainless steel, vulnerable to rust. The following seven eLearning courses are included in the Ferrous Materials Bundle: Steel and Cast Iron. Each course is approximately one-hour in duration. Modules include: Introduction to Physical Properties, Introduction to Mechanical Properties, Introduction to Metals, Hardness Testing, Ferrous Metals, Classification of Steel, Essentials of Heat Treatment of Steel.
Training / Education

FEA Beyond Basics: Thermal Analysis Web Course RePlay

Anytime
Finite Element Analysis (FEA) is a powerful and well recognized tool used in the analysis of heat transfer problems. However, FEA can only analyze solid bodies and, by necessity thermal analysis with FEA is limited to conductive heat transfer. The other two types of heat transfer: convection and radiation must by approximated by boundary conditions. Modeling all three mechanisms of heat transfer without arbitrary assumption requires a combined use of FEA and Computational Fluid Dynamics (CFD).
Training / Education

Introduction to Design Review Based on Failure Modes (DRBFM) Web Course RePlay

Anytime
This course will explain all phases of the DRBFM methodology and provide details on how to accomplish the specific steps. With the Design Review Based on Failure Modes (DRBFM) and Design Review Based on Test Results (DRBTR) Process Guidebook that is bundled with the course, the instructor will provide specific information on each step. Formats, examples, notes and homework slides will be used to illustrate the defined steps of the new SAE J2886 DRBFM Recommended Practice. Similarities in content between DRBFM and FMEA will be discussed, however the focus will be on conducting DRBFM methodology.
Training / Education

Additive Manufacturing Bundle

Anytime
Many companies are starting to recognize the benefits additive manufacturing (AM) offers in terms of speed, simplicity, reliability, and cost. Additive manufacturing is a process in which a three-dimensional computer model design s built into a physical object by joining thin layers of material. AM is a versatile field that encompasses a variety of methods, materials, and applications. The one-hour courses in this bundle explain the fundamental concepts of additive manufacturing, including the main principles behind AM and the safety precautions to take during the process.
Training / Education

Out-Innovate the Competition

Anytime
Well-intentioned leaders, in their attempts to boost innovation, are inadvertently destroying it. Based on Stephen Shapiro’s bestselling book, Best Practices are Stupid: Ways to Out-Innovate the Competition, this online learning experience offers counterintuitive yet proven strategies for boosting innovation and making it a repeatable, sustainable, and profitable process. He teaches that innovation isn't just about generating occasional new ideas; it's about staying consistently one step ahead of the competition.
Training / Education

Battery Management Connection and Control

Anytime
Introduction to Power Electronic Converters: In this course, you will learn why we need power converters. We will discuss the basic principles of power conversion and you will receive a brief overview of the various types of power converters. You will learn how to recognize different voltage, current, and power levels, as well as the AC or DC character of electrical power, through examples of common, present-day electrical applications. Power conversion and efficiency in battery systems: In this course, you will be taken into the lab to get acquainted with power conversion principles and efficiency measurements.
Training / Education

Introduction to Weibull Solution Methods

Anytime
Weibull Analysis is the starting point for solving most issues related to product reliability, maintainability, supportability, quality, safety, test planning, and cost control. Weibull Analysis is popular worldwide as the best method for modeling and predicting variability and failure of designs, products, and systems. Instructor Wes Fulton will provide a solid overview of Weibull Solution Methods including an explanation of 16 additional Weibull Analysis capabilities, or Weibull Extensions.
Training / Education

Electrodes to Cells

Anytime
This course explains how a lithium-ion cell can be designed, sized, and produced for a specific capacity and energy. The key steps in the selection and production of the main components of the cell, i.e. electrodes, separator, and electrolyte, are discussed. The slurry formulation, mixing, coating, drying, calendaring, cutting, stacking, electrolyte formulation/injection, sealing/packing, and formation cycles are detailed both in terms of machineries and the processing parameters.
Training / Education

Adhesives Bundle

Anytime
Manufacturers increasingly rely on adhesives to assemble a variety of products, such as cars, computers, furniture, and toys. An adhesive is a substance used to join two or more materials. Adhesive bonding is the process of placing an adhesive between two surfaces, or substrates, and allowing it to harden, or cure. Structural adhesives are most commonly used in adhesive bonding, since they can easily withstand heavy loads. Epoxies, anaerobics, acrylics, silicones, urethanes, and cyanoacrylates are commonly used structural adhesives. These courses explain the fundamental concepts of adhesive bonding as they apply to product assembly.
Training / Education

Introduction to FMEA: What, Why, When, and How

Anytime
Failure Mode and Effects Analysis (FMEA) is an essential part of any product design or redesign activity. FMEA is a proactive, quantitative, qualitative, step-by-step approach for identifying and analyzing all potential points of failure in any product or service. This team-based activity can dramatically improve product performance. It can also reduce manufacturing issues at the component, system, and processing levels. This module gives a high-level overview of FMEA facts: WHAT an FMEA is, WHY they are used, WHEN an FMEA is created, WHO is on the FMEA development team, and HOW the FMEA form is completed.
Training / Education

Introduction to Design of Experiments (DOE) for Engineers

Anytime
Design of Experiments (DOE) is a methodology that can be effective for general problem solving, as well as for improving or optimizing product design and manufacturing processes. Specific applications of DOE include, but are not limited to, identifying root causes to quality or production problems, identifying optimized design and process settings, achieving robust designs, and generating predictive math models that describe physical system behavior. This introductory eLearning course provides an example scenario to give learners the opportunity to discover situations that may warrant a designed experiment.
Training / Education

Principles of Metallurgy

Anytime
This online course teaches the basic microscopic structures present inside of metals, how these structures and metal composition influence metal strength, and how these structures can be modified using common manufacturing processes to obtain specific mechanical properties. Several examples are presented to demonstrate how common alloying and manufacturing methods are used to modify the microscopic structures and properties of metals. It includes twelve modules that are five to 25 minutes in length, followed by a quiz.
Training / Education

Failure Mode and Effects Analysis (FMEA) for Robust Design Case Study

Anytime
FMEA is an essential part of any product design or redesign. An FMEA requires that a dedicated team take a step-by-step, proactive approach to identifying and analyzing all potential failure modes in a product or service. Completing an FMEA can dramatically improve product performance and reduce manufacturing issues at the component, system, and processing level.  This interactive FMEA case study gives you an opportunity to work through the process as an engineer develops an FMEA.
Training / Education

Introduction to Hybrid Electric Vehicle Systems

Anytime
Hybrid Electric Vehicle (HEV) models currently populating the vehicle electrification landscape indicate their dominance in the market. Although electric, plug-in, and fuel cell vehicles are making inroads in the market, the HEV stands as the market leader in adoption, and manufacturers have no plans on diminishing HEV production. HEV powertrain operation is totally different from the traditional vehicle. It is essential to understand the various operating modes and how failure modes in the hybrid system affect its operation.
Training / Education

Root Cause Problem Solving - Methods and Tools

Anytime
How do you solve a problem? Do you find yourself using quick and easy solutions or a structured methodology? Too often, organizations tend to seek quick solutions to a problem without adequately addressing its underlying cause. These decisions often result in solutions that don't work or aren't sustainable, often wasting time, effort, and money. To combat these issues and adopt a fresh approach, teams can use the methods and tools of root cause problem solving.
Training / Education

Design for Additive Manufacturing: Toward End-Part Production Web Course RePlay

Anytime
Additive manufacturing (AM), is a manufacturing process of choice for functional part production, adding to the suite of choices a designer has available when designing a part for manufacturing. Like other traditional processes like casting and machining, AM has its set of constraints. An added layer of complexity comes from the fact that there are several different AM processes, and some of the design constraints are process-specific. On the other hand, AM offers a range of opportunities in design freedom and mass customization as well as in cost and lead time reduction in some cases.
X