Refine Your Search

Topic

Search Results

Standard

Methods for Determining the Effect of Liquid Disinfectants on Seats in Transport Aircraft

2022-03-02
CURRENT
ARP8463
This SAE Aerospace Recommended Practice (ARP) defines acceptable methods for determining the effect of disinfectants application to passenger and crew seating products in transport aircraft. This ARP selected a standard application process for all disinfectants in order to remove one variable from the investigation, which, at the time, was more concerned with the unknown effect of disinfectant chemicals on seat materials. The SAE Aircraft Seat Committee noted that most disinfectant manufacturers have their own application regimens to ensure the effectiveness of their product and that these differ from those defined in the ARP. Consequently, the standard application methodology defined in the ARP is not suitable for qualifying disinfectants, but is rather a standard method to compare the disinfectant’s behavior across a range of seat materials. Acceptance of individual disinfectants for specific application regimens is outside the scope of this ARP.
Standard

Safety Lap Belts (For Civil Transport Aircraft)

2000-08-01
CURRENT
ARP682C
This Aerospace Recommended Practice (ARP) provides recommendations intended for standardization of safety lap belts without hindering the development of new, improved design. The purpose is not to specify the design methods or specific mechanism to accomplish the objectives.
Standard

Webbing Service Life for Occupant Restraints

2021-10-01
CURRENT
ARP6073
This document applies to webbing used on occupant restraint systems in service on 14 CFR/CS part 23, part 25, part 27, and part 29 aircraft applications. The guidelines presented within this document are intended to be supplemental to the requirements supplied by the OEM in the CMM, ICA, or like document. In cases of conflict between this ARP and the OEM’s requirements, the requirements of the OEM shall be followed. The objective of this document is to establish practical guidelines to help operators in the determining if restraint webbing has reached the end of its service life. The recommendations contained herein are based on test data from in service restraint systems and the continued airworthiness guidelines recommended by restraint system OEMs.
Standard

CREW RESTRAINT SYSTEM

1991-05-10
HISTORICAL
ARP998
Part I of this document relates to the restraint systems for the flight deck crew. Part II considers restraint systems for other crew members, including cabin attendants. The recommendations herein include coverage of such items as harness reels, shoulder harnesses, and safety belts. However, the intention is not to limit the design of restraint devices to these particular system components only. These recommendations apply primarily to forward-facing seats. However, the design must take into account the fact that loads may be applied from any direction and be of a magnitude at least as great as those specified in current FAR's.
Standard

CREW RESTRAINT SYSTEM

1988-06-01
HISTORICAL
ARP998A
Part I of this document relates to the restraint systems for the flight deck crew. Part II considers restraint systems for flight attendants and other crew members. As applicable, the same criteria should be incorporated in both Part I and Part II installations. The recommendations herein include coverage of such items as harness reels, shoulder harnesses, and safety belts. However, the intention is not to limit the design of restraint devices to these particular system components only. These recommendations apply primarily to forward-facing and aft-facing seats. However, the design should take into account the fact that loads may be applied from any direction and be of a magnitude at least as great as those specified in current FAR's.
Standard

PASSENGER SEAT DESIGN COMMERCIAL TRANSPORT AIRCRAFT

1974-01-01
HISTORICAL
ARP750A
In addition to those aspects of a passenger seat such as comfort and appearance, the passenger seat, whether aft, forward, or side-facing, is the basic link that supports and ties the air transport passenger to the aircraft structure. It is essential that the support and tiedown functions be accomplished in a manner that will provide maximum safety and security during all normal conditions of flight, emergency flight maneuvers and crash landings, whether on land or sea and that these functions not be compromised to attain the comfort and appearance features.
Standard

PASSENGER SEAT DESIGN COMMERCIAL TRANSPORT AIRCRAFT

1987-11-19
HISTORICAL
ARP750B
In addition to those aspects of a passenger seat as comfort and appearance, the passenger seat, whether aft, forward or side facing, is the basic link that supports and ties the occupant to the aircraft structure. It is essential that the support and tie down functions be accomplished in a manner that will provide maximum safety during all normal conditions of flight, emergency flight maneuvers and crash landings, whether on land or water, and that these functions are not compromised to attain the comfort and appearance features.
Standard

PASSENGER SEAT DESIGN

1991-05-01
HISTORICAL
ARP750
In addition to those aspects of a passenger seat such as comfort and appearance, the passenger seat, whether aft, forward, or side-facing is the basic link that supports and ties the air transport passenger to the aircraft structure. It is essential that the support and tiedown functions be accomplished in a manner that will provide maximum safety and security during all normal conditions of flight, emergency flight maneuvers and crash landings, whether on land or sea and that these functions not be compromised to attain the comfort and appearance features.
Standard

Abuse Load Testing for In-Seat Deployable Video Systems

2005-06-20
HISTORICAL
ARP5475
This SAE Aerospace Recommended Practice (ARP) provides guidelines for abuse load testing of a deployable Individual Video System (IVS). The abuse load testing defined in this ARP is intended to only address the evaluation of the deployable IVS regarding stowage of the system and injurious projections/protrusions as a result of passenger interaction with the video system. Other aspects of the video system design or qualification may require additional testing or analysis and are outside the scope of this ARP. This ARP is not intended to address customer satisfaction or reliability aspects of individual designs.
Standard

Abuse Load Testing for In-Seat Deployable Video Systems

2011-11-28
CURRENT
ARP5475A
This SAE Aerospace Recommended Practice (ARP) provides guidelines for abuse load testing of a deployable Individual Video System (IVS). The abuse load testing defined in this ARP is intended to only address the evaluation of the deployable IVS regarding stowage of the system and injurious projections/protrusions as a result of passenger interaction with the video system. Other aspects of the video system design or qualification may require additional testing or analysis and are outside the scope of this ARP. This ARP is not intended to address customer satisfaction or reliability aspects of individual designs.
Standard

Performance Standard for Child Restraint Systems in Transport Category Airplanes

2019-10-31
CURRENT
AS5276/1
This SAE Aerospace Standard (AS) defines minimum performance standards and related qualification criteria for add-on child restraint systems (CRS) which provide protection for small children in passenger seats of transport category airplanes. The AS is not intended to provide design criteria that could be met only by an aircraft-specific CRS. The goal of this standard is to achieve child-occupant protection by specifying a dynamic test method and evaluation criteria for the performance of CRS under emergency landing conditions.
Standard

TORSO RESTRAINT SYSTEMS

1986-03-01
HISTORICAL
AS8043
This Aerospace Standard specifies laboratory test procedures and minimal requirements for the manufacturer of torso restraint systems for use in small fixed wing aircraft and rotorcraft. It is intended to establish a minimum level of quality which can be called upon by the designer of those systems. However, compliance with this standard alone may not assure adequate performance of the restraint system under normal and emergency conditions. Such performance requires consideration of factors beyond the scope of this standard, and must be demonstrated by a system evaluation procedure which includes the seat, the occupant, the specific restraint installation and the cabin interior configuration.
Standard

Restraint Systems for Civil Aircraft

2023-05-10
CURRENT
AS8043C
This SAE Aerospace Standard (AS) specifies laboratory test procedures and minimum requirements for the manufacturer of restraint systems for use in civil aircraft. It is intended to establish a minimum level of quality which can be called upon by the designer of those systems. However, compliance with this standard alone may not assure adequate performance of the restraint system under normal and emergency conditions. Such performance requires consideration of factors beyond the scope of this standard, and must be demonstrated by a system evaluation procedure which includes the seat, the occupant, the specific restraint installation, and the cabin interior configuration. This standard specifies the requirements for Type 1, Type 2, and Type 3 restraint systems. Buckles that release automatically or through any means other than the direct action of the fingers or thumb on the buckle are beyond the scope of this standard.
Standard

Restraint Systems for Civil Aircraft

2000-03-01
HISTORICAL
AS8043A
This SAE Aerospace Standard (AS) specifies laboratory test procedures and minimum requirements for the manufacturer of restraint systems for use in civil aircraft. It is intended to establish a minimum level of quality which can be called upon by the designer of those systems. However, compliance with this standard alone may not assure adequate performance of the restraint system under normal and emergency conditions. Such performance requires consideration of factors beyond the scope of this standard, and must be demonstrated by a system evaluation procedure which includes the seat, the occupant, the specific restraint installation and the cabin interior configuration. This standard specifies the requirements for Type 1, Type 2 and Type 3 restraint systems.
X