Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Model-Based Control of BMEP and NOx Emissions in a Euro VI 3.0L Diesel Engine

2017-09-04
2017-24-0057
A model-based approach to control BMEP (Brake Mean Effective Pressure) and NOx emissions has been developed and assessed on a FPT F1C 3.0L Euro VI diesel engine for heavy-duty applications. The controller is based on a zero-dimensional real-time combustion model, which is capable of simulating the HRR (heat release rate), in-cylinder pressure, BMEP and NOx engine-out levels. The real-time combustion model has been realized by integrating and improving previously developed simulation tools. A new discretization scheme has been developed for the model equations, in order to reduce the accuracy loss when the computational step is increased. This has allowed the required computational time to be reduced to a great extent.
Technical Paper

Experimental Validation of Combustion Models for Diesel Engines Based on Tabulated Kinetics in a Wide Range of Operating Conditions

2017-09-04
2017-24-0029
Computational fluid dynamics represents a useful tool to support the design and development of Heavy Duty Engines, making possible to test the effects of injection strategies and combustion chamber design for a wide range of operating conditions. Predictive models are required to ensure accurate estimations of heat release and the main pollutant emissions within a limited amount of time. For this reason, both detailed chemistry and turbulence chemistry interaction need to be included. In this work, the authors intend to apply combustion models based on tabulated kinetics for the prediction of Diesel combustion in Heavy Duty Engines. Four different approaches were considered: well-mixed model, presumed PDF, representative interactive flamelets and flamelet progress variable. Tabulated kinetics was also used for the estimation of NOx emissions.
Technical Paper

Neural-Network Based Approach for Real-Time Control of BMEP and MFB50 in a Euro 6 Diesel Engine

2017-09-04
2017-24-0068
A real-time approach has been developed and assessed to control BMEP (brake mean effective pressure) and MFB50 (crank angle at which 50% of fuel mass has burnt) in a Euro 6 1.6L GM diesel engine. The approach is based on the use of feed-forward ANNs (artificial neural networks), which have been trained using virtual tests simulated by a previously developed low-throughput physical engine model. The latter is capable of predicting the heat release and the in-cylinder pressure, as well as the related metrics (MFB50, IMEP - indicated mean effective pressure) on the basis of an improved version of the accumulated fuel mass approach. BMEP is obtained from IMEP taking into account friction losses. The low-throughput physical model does not require high calibration effort and is also suitable for control-oriented applications. However, control tasks characterized by stricter demands in terms of computational time may require a modeling approach characterized by a further lower throughput.
Technical Paper

Zero Dimensional Models for EGR Mass-Rate and EGR Unbalance Estimation in Diesel Engines

2017-09-04
2017-24-0070
A precise estimation of the recirculated exhaust gas rate and oxygen concentration as well as a predictive evaluation of the possible EGR unbalance among cylinders are of paramount importance, especially if non-conventional combustion modes, which require high EGR flow-rates, are implemented. In the present paper, starting from the equation related to convergent nozzles, the EGR mass flow-rate is modeled considering the pressure and the temperature upstream of the EGR control valve, as well as the pressure downstream of it. The restricted flow-area at the valve-seat passage and the discharge coefficient are carefully assessed as functions of the valve lift. Other models were fitted using parameters describing the engine working conditions as inputs, following a semi-physical and a purely statistical approach. The resulting models are then applied to estimate EGR rates to both conventional and non-conventional combustion conditions.
X