Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

High Temperature, High Energy Density Dielectrics for Power Electronics Applications

2012-10-22
2012-01-2208
Mn and/or rare earth-doped xCaTiO₃ - (1-x)CaMeO₃ dielectrics, where Me=Hf or Zr and x=0.7, 0.8, and 0.9 were developed to yield materials with room temperature relative permittivities of Εr ~ 150-170, thermal coefficients of capacitance (TCC) of ± 15.8% to ± 16.4% from -50 to 150°C, and band gaps of ~ 3.3-3.6 eV as determined by UV-Vis spectroscopy. Un-doped single layer capacitors exhibited room temperature energy densities as large as 9.0 J/cm₃, but showed a drastic decrease in energy density above 100°C. When doped with 0.5 mol% Mn, the temperature dependence of the breakdown strength was minimized, and energy densities similar to room temperature values (9.5 J/cm₃) were observed up to 200°C. At 300°C, energy densities as large as 6.5 J/cm₃ were measured. These observations suggest that with further reductions in grain size and dielectric layer thickness, the xCaTiO₃ - (1-x)CaMeO₃ system is a strong candidate for integration into future power electronics applications.
Technical Paper

High Voltage Metal Oxide Varistors for Surge Protection

2008-11-11
2008-01-2850
Zinc oxide based metal oxide varistors (MOV) are widely used electrical surge protection components. Modern high power, high-density electronics post more requirements such as smaller footprints, higher current density and higher nonlinearity on MOVs. Such requirements can no longer be satisfied by commercially available MOVs due to their limited voltage capability, high leakage current and mechanical cracking related reliability issues, most of which are associated with the presence of non-uniformity, defects and coarse grain in their micro-structures. New formulations and processes have been developed to overcome such limitations. This work has identified compositions that can be sintered at relatively lower temperatures than typical commercial MOVs, but with largely improved I-V characteristics due to refined and uniform microstructure.
X