Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Newly Developed AZ Series Engine

2001-03-05
2001-01-0327
The design of the newly developed Toyota AZ series 4 cylinder engine has been optimized through both simulations and experiments to improve heat transfer, cooling water flow, vibration noise and other characteristics. The AZ engine was developed to achieve good power performance and significantly reduced vibration noise. The new engine meets the LEV regulations due to the improved combustion and optimized exhaust gas flow. A major reduction in friction has resulted in a significant improvement in fuel economy compared with conventional models. It also pioneered a newly developed resin gear drive balance shaft.
Technical Paper

Development of Planar Oxygen Sensor

2001-03-05
2001-01-0228
In preparation for compliance with California's SULEV standard and Euro STAGE 4 standard, which will take effect in 2002 and 2005, respectively, we have developed a laminated planar oxygen sensor. The developed sensor has the following characteristics: high thermal conductivity and superior dielectric characteristic, due to direct joining of the heater element alumina substrate and the sensor element zirconia electrolyte; low heat stress at temperature rise, due to optimized heater design; superior sensor protection from water droplets, and improved sensor response, due to optimized arrangement of intake holes in the sensor cover. With these characteristics, the developed oxygen sensor can be activated in 10 seconds after cold start. This report describes the technologies we used to develop the early-activation oxygen sensor.
Technical Paper

Development of Vapor Reducing Fuel Tank System

2001-03-05
2001-01-0729
In succession to the world-first introduction of a mass production gasoline hybrid passenger car into the Japanese market in 1997, Toyota also has introduced an enhanced version of the above to the US and European markets in 2000. Upon introduction of Toyota Hybrid System (THS) into the US market, a drastic reduction of gasoline vapor evaporation from the fuel tank was necessary, in order to meet the most stringent exhaust emission (SULEV) and evaporative emission standards in the world. In order to meet this requirement, a fuel tank system named “Vapor Reducing Fuel Tank System” was developed. This is the first commercial application in the world to use a variable tank volume to drastically reduce gasoline vapor generation.
X