Refine Your Search

Search Results

Viewing 1 to 9 of 9
Journal Article

Formal Methods for the Analysis of Critical Control Systems Models: Combining Non-Linear and Linear Analyses

2013-09-17
2013-01-2109
Critical control systems are often built as a combination of a control core with safety mechanisms allowing to recover from failures. For example a PID controller used with triplicated inputs. Typically those systems would be designed at the model level in a synchronous language like Lustre or Simulink, and their code automatically generated from those models. In previous SAE symposium, we addressed the formal analysis of such systems - focusing on the safety parts - using a combination of formal techniques, ie. k-induction and abstract interpretation. The approach developed here extends the analysis of the system to the control core. We present a new analysis framework combining the analysis of open-loop stable controller with those safety constructs. We introduce the basic analysis approaches: abstract interpretation synthesizing quadratic invariants and backward analysis based on quantifier elimination.
Journal Article

Continuous-Positional Automatic Ballonet Control System for Airship

2013-09-17
2013-01-2236
This paper is devoted to a method of creating of the automated ballonet system for pressure control inside an airship envelope. Along with the study of the effects of the positional control system parameters, the authors develop novel control scheme. It is based on a new hybrid controller, which combines positional approach to forming the output control signal with a contour of continuous correction of input signal, which defines the pressure drop on the surface of the envelope as a function of the flight altitude. This approach allows reducing the effect of self-oscillations of airship envelope internal pressure on the flight altitude. In order to prove the new approach the mathematical model is being obtained. The results of the derivation and simulations of the control system operation are presented in this paper.
Journal Article

Multi-Axis Serially Redundant, Single Channel, Multi-Path FBW Flight Control System

2013-09-17
2013-01-2257
A multi-axis serially redundant, single channel, multi-path FBW (FBW) control system comprising: serially redundant flight control computers in a single channel where only one “primary” flight control computer is active and controlling at any given time; a matrix of parallel flight control surface controllers including stabilizer motor control units (SMCU) and actuator electronics control modules (AECM) define multiple control paths within the single channel, each implemented with dissimilar hardware and which each control the movement of a distributed set of flight control surfaces on the aircraft in response to flight control surface commands from the primary flight control computer, and a set of (pilot and co-pilot) controls and aircraft surface/reference/navigation sensors and systems which provide input to a primary flight control computer and are used to generate the flight control surface commands in accordance with the control law algorithms implemented in the flight control computers.
Journal Article

Environmental Impact Assessment, on the Operation of Conventional and More Electric Large Commercial Aircraft

2013-09-17
2013-01-2086
Global aviation is growing exponentially and there is a great emphasis on trajectory optimization to reduce the overall environmental impact caused by aircraft. Many optimization techniques exist and are being studied for this purpose. The CLEAN SKY Joint Technology Initiative for aeronautics and Air transport, a European research activity run under the Seventh Framework program, is a collaborative initiative involving industry, research organizations and academia to introduce novel technologies to improve the environmental impact of aviation. As part of the overall research activities, “green” aircraft trajectories are addressed in the Systems for Green Operations (SGO) Integrated Technology Demonstrator. This paper studies the impact of large commercial aircraft trajectories optimized for different objectives applied to the on board systems.
Technical Paper

Thermal Management Investigations for Fuel Cell Systems On-Board Commercial Aircraft

2013-09-17
2013-01-2274
The integration of fuel cell systems as an independent energy source (Auxiliary Power Unit, APU) requires enhanced aircraft cooling architectures. New environmental control systems and systems with an increased cooling demand are investigated in various research projects. Cooling system architectures can be designed which benefit from similar requirements, e.g. by using the same cooling loops. Additionally, an increased cooling demand makes the investigation of alternative heat sinks necessary. For detailed system investigations simulation studies are used. A model library has been created in Dymola/Modelica containing the necessary component models to simulate cooling systems. The used modeling approaches and main model information are presented in this article. In order to understand the basic system behavior a Design of Experiment (DOE) is useful. If only two or three parameters are considered, simulation studies can be performed for each possible parameter combination.
Technical Paper

Power and Thermal Management for Future Aircraft

2013-09-17
2013-01-2273
The aircraft power and thermal management system (PTMS) developed by Honeywell combines the functions of an auxiliary power unit (APU), emergency power unit (EPU), environmental control system (ECS), and thermal management system (TMS) in one integrated system. For the F-35 aircraft this approach resulted in a substantial reduction in overall aircraft size and weight as compared to configurations using separate “federated” secondary power systems. Future aircraft incorporating the new more electric architecture (MEA) and energy efficient aircraft (EEA) initiatives are likely to benefit from this integrated approach as well, but they are also likely to require increased electric power generation capability, greater cooling capacity and higher operating efficiency.
Technical Paper

A Multi-disciplinary and Multi-scale Simulation-Based Approach for the Design of Control Systems

2013-09-17
2013-01-2212
This paper introduces a model-based systems and embedded software engineering, workflow for the design of control systems. The interdisciplinary approach that is presented relies on an integrated set of tools that addresses the needs of various engineering groups, including system architecture, design, and validation. For each of these groups, a set of best practices has been established and targeted tools are proposed and integrated in a unique platform, thus allowing efficient communication between the various groups. In the initial stages of system design, including functional and architectural design, a SysML-based approach is proposed. This solution is the basis to develop systems that have to obey both functional and certification standards such as ARINC 653 (IMA) and ARP 4754A. Detailed system design typically requires modeling and simulation of each individual physical component of the system by various engineering groups (mechanical, electrical, etc.).
Technical Paper

Refrigerant Charge Management and Control for Next-Generation Aircraft Vapor Compression Systems

2013-09-17
2013-01-2241
Vapor compression systems (VCS) offer significant benefits as the backbone for next generation aircraft thermal management systems (TMS). For a comparable lift, VCS offer higher system efficiencies, improved load temperature control, and lower transport losses than conventional air cycle systems. However, broad proliferation of VCS for many aircraft applications has been limited primarily due to maintenance and reliability concerns. In an attempt to address these and other VCS system control issues, the Air Force Research Laboratory has established a Vapor Cycle System Research Facility (VCSRF) to explore the practical application of dynamic VCS control methods for next-generation, military aircraft TMS. The total refrigerant mass contained within the closed refrigeration system (refrigerant charge) is a critical parameter to VCS operational readiness. Too much or too little refrigerant can be detrimental to system performance.
Technical Paper

Integrated Health Monitoring and Fault Adaptive Control for an Unmanned Hexrotor Helicopter

2013-09-17
2013-01-2331
This paper presents a novel health monitoring and fault adaptive control architecture for an unmanned hexrotor helicopter. The technologies developed to achieve the described level of robust fault contingency management include; 1.) A Particle Swarm Optimization (PSO) routine for maximizing the “built-in” fault tolerance that the closed loop flight control system affords, 2.) A two-stage Kalman filter scheme for real-time identification of faults that are masked by control system compensation, and 3.) A reconfigurable control allocation method which compensates for large degradations of the six main motor/rotor assemblies. The fault adaptive control system presented herein has strong robustness against small faults without the need for controller reconfiguration, and strong tolerance of large faults through adaptive accommodation of the fault source and severity.
X