Refine Your Search

Topic

Author

Search Results

Journal Article

A Semi-Automated Approach to Real World Motor Vehicle Crash Reconstruction Using a Generic Simplified Vehicle Buck Model

2016-04-05
2016-01-1488
Computational finite element (FE) modeling of real world motor vehicle crashes (MVCs) is valuable for analyzing crash-induced injury patterns and mechanisms. Due to unavailability of detailed modern FE vehicle models, a simplified vehicle model (SVM) based on laser scans of fourteen modern vehicle interiors was used. A crash reconstruction algorithm was developed to semi-automatically tune the properties of the SVM to a particular vehicle make and model, and subsequently reconstruct a real world MVC using the tuned SVM. The required algorithm inputs are anthropomorphic test device position data, deceleration crash pulses from a specific New Car Assessment Program (NCAP) crash test, and vehicle interior property ranges. A series of automated geometric transformations and five LSDyna positioning simulations were performed to match the FE Hybrid III’s (HIII) position within the SVM to reported data. Once positioned, a baseline simulation using the crash test pulse was created.
Journal Article

Control Allocation for Multi-Axle Hub Motor Driven Land Vehicles

2016-04-05
2016-01-1670
This paper outlines a real-time hierarchical control allocation algorithm for multi-axle land vehicles with independent hub motor wheel drives. At the top level, the driver’s input such as pedal position or steering wheel position are interpreted into desired global state responses based on a reference model. Then, a locally linearized rigid body model is used to design a linear quadratic regulator that generates the desired global control efforts, i.e., the total tire forces and moments required track the desired state responses. At the lower level, an optimal control allocation algorithm coordinates the motor torques in such a manner that the forces generated at tire-road contacts produce the desired global control efforts under some physical constraints of the actuation and the tire/wheel dynamics. The performance of the proposed control system design is verified via simulation analysis of a 3-axle heavy vehicle with independent hub-motor drives.
Journal Article

An Efficient, Durable Vocational Truck Gasoline Engine

2016-04-05
2016-01-0660
This paper describes the potential for the use of Dedicated EGR® (D-EGR®) in a gasoline powered medium truck engine. The project goal was to determine if it is possible to match the thermal efficiency of a medium-duty diesel engine in Class 4 to Class 7 truck operations. The project evaluated a range of parameters for a D-EGR engine, including displacement, operating speed range, boosting systems, and BMEP levels. The engine simulation was done in GT-POWER, guided by experimental experience with smaller size D-EGR engines. The resulting engine fuel consumption maps were applied to two vehicle models, which ran over a range of 8 duty cycles at 3 payloads. This allowed a thorough evaluation of how D-EGR and conventional gasoline engines compare in fuel consumption and thermal efficiency to a diesel. The project results show that D-EGR gasoline engines can compete with medium duty diesel engines in terms of both thermal efficiency and GHG emissions.
Journal Article

Simultaneous PLIF Imaging of OH and PLII Imaging of Soot for Studying the Late-Cycle Soot Oxidation in an Optical Heavy-Duty Diesel Engine

2016-04-05
2016-01-0723
The effects of injection pressure and swirl ratio on the in-cylinder soot oxidation are studied using simultaneous PLIF imaging of OH and LII imaging of soot in an optical diesel engine. Images are acquired after the end of injection in the recirculation zone between two adjacent diesel jets. Scalars are extracted from the images and compared with trends in engine-out soot emissions. The soot emissions decrease monotonically with increasing injection pressure but show a non-linear dependence on swirl ratio. The total amount of OH in the images is negatively correlated with the soot emissions, as is the spatial proximity between the OH and soot regions. This indicates that OH is an important soot oxidizer and that it needs to be located close to the soot to perform this function. The total amount of soot in the images shows no apparent correlation with the soot emissions, indicating that the amount of soot formed is a poor predictor of the emission trends.
Journal Article

New Concept for Overcoming the Trade-Off between Thermal Efficiency, Each Loss and Exhaust Emissions in a Heavy Duty Diesel Engine

2016-04-05
2016-01-0729
To overcome the trade-offs of thermal efficiency with energy loss and exhaust emissions typical of conventional diesel engines, a new diffusion-combustion-based concept with multiple fuel injectors has been developed. This engine employs neither low temperature combustion nor homogeneous charge compression ignition combustion. One injector was mounted vertically at the cylinder center like in a conventional direct injection diesel engine, and two additional injectors were slant-mounted at the piston cavity circumference. The sprays from the side injectors were directed along the swirl direction to prevent both spray interference and spray impingement on the cavity wall, while improving air utilization near the center of the cavity.
Journal Article

Experimental Investigation of Homogeneous Charge Induced Ignition (HCII) with Low-Pressure Injection to Reduce PM Emissions in a Heavy-Duty Engine

2016-04-05
2016-01-0775
Homogeneous Charge Induced Ignition (HCII) combustion utilizes a port injection of high-volatile fuel to form a homogeneous charge and a direct injection of high ignitable fuel near the Top Dead Center (TDC) to trigger combustion. Compared to Conventional Diesel Combustion (CDC) with high injection pressures, HCII has the potential to achieve diesel-like thermal efficiency with significant reductions in NOx and PM emissions with relatively low-pressure injections, which would benefit the engine cost saving remarkably. In the first part of current investigation, experiments were conducted at medium load with single diesel injection strategy. HCII exhibited great potential of using low injection pressures to achieve low soot emissions. But the engine load for HCII was limited by high heat release rate. Thus, in the second and third part, experiments were performed at high and low load with double diesel injection strategy.
Journal Article

Conventional and Low Temperature Combustion Using Naphtha Fuels in a Multi-Cylinder Heavy-Duty Diesel Engine

2016-04-05
2016-01-0764
The regulatory requirements to lower both greenhouse gases and criteria pollutants from heavy duty engines are driving new perspectives on the interaction between fuels and engines. Fuels that lower the burden on engine manufacturers to reach these goals may be of particular interest. Naphtha, a fuel with a higher volatility than diesel, but with the ability to be burned under traditional mixing-controlled combustion conditions is one such fuel. The higher volatility promotes fuel-air mixing and when combined with its typically lower aromatic content, leads to reduced soot emissions when compared directly to diesel. Naphtha also has potential to be less energy-intensive at the refinery level, and its use in transportation applications can potentially reduce CO2 emissions on a well-to-wheels basis.
Journal Article

Emissions and Fuel Economy Evaluation from Two Current Technology Heavy-Duty Trucks Operated on HVO and FAME Blends

2016-04-05
2016-01-0876
Gaseous and particulate matter (PM) emissions were assessed from two current technology heavy-duty vehicles operated on CARB ultra-low sulfur diesel (ULSD), hydrotreated vegetable oil (HVO) blends, and a biodiesel blend. Testing was performed on a 2014 model year Cummins ISX15 vehicle and on a 2010 model year Cummins ISB6.7 vehicle. Both vehicles were equipped with diesel oxidation catalysts (DOC), diesel particulate filter (DPF), and selective catalytic reduction (SCR) systems. Testing was conducted over the Heavy-Duty Urban Dynamometer Driving Schedule (UDDS) and Heavy Heavy-Duty Diesel Truck (HHDDT) Transient Cycle. The results showed lower total hydrocarbons (THC), non-methane hydrocarbons (NMHC), and methane (CH4) emissions for the HVO fuels and the biodiesel blend compared to CARB ULSD. Overall, nitrogen oxide (NOx) emissions showed discordant results, with both increases and decreases for the HVO fuels.
Journal Article

A Study on High-Accuracy Test Method for Fuel Consumption of Heavy-Duty Diesel Vehicles Considering the Transient Characteristics of Engines

2016-04-05
2016-01-0908
In the conventional approval test method of fuel consumption for heavy-duty diesel vehicles currently in use in Japan, the fuel consumption under the transient test cycle is calculated by integrating the instantaneous fuel consumption rate referred from a look-up table of fuel consumptions measured under the steady state conditions of the engine. Therefore, the transient engine performance is not considered in this conventional method. In this study, a highly accurate test method for fuel consumption in which the map-based fuel consumption rate is corrected using the transient characteristics of individual engines was developed. The method and its applicability for a heavy-duty diesel engine that complied with the Japanese 2009 emission regulation were validated.
Journal Article

An Approach to Controlling N2O Emission on HDD On-Road Applications

2016-04-05
2016-01-0948
Control of N2O emissions is a significant challenge for manufacturers of HDD On-Road engines and vehicles due to requirements for NOx control and Green House Gas (GHG) Phases I & II requirements. OEMs continually strive to improve BSFE which often results in increased engine out NOx (EO NOx) emissions. Consequently, the necessity for higher NOx conversions results in increased N2O emissions over traditional SCR and SCR+ASC catalysts systems [1]. This study explores methods to improve NOx conversion while reducing the SCR contribution of N2O across the exhaust after treatment systems. For example, combinations of two traditional SCR catalysts, one Iron based and another Copper based, can be utilized at various proportions by volume to optimize their SCR efficiency while minimizing the N2O emissions. Results show that a proper combination of catalysts volume can significantly reduce N2O levels while simultaneously reaching the highest levels of NOx performance achieved in the study.
Journal Article

Robust, Cost-Optimal and Compliant Engine and Aftertreatment Operation using Air-path Control and Tailpipe Emission Feedback

2016-04-05
2016-01-0961
Heavy-duty diesel engines are used in a wide range of applications. For varying operating environments, the engine and aftertreatment system must comply with the real-world emission legislation limits. Simultaneously, minimal fuel consumption and good drivability are crucial for economic competitiveness and usability. Meeting these requirements takes substantial development and calibration effort, and complying with regulations results in a trade-off between emissions and fuel consumption. TNO's Integrated Emission Management (IEM) strategy finds online, the cost-optimal point in this trade-off and is able to deal with variations in operating conditions, while complying with legislation limits. Based on the actual state of the engine and aftertreatment system, an optimal engine operating point is computed using a model-based optimal-control algorithm.
Technical Paper

Combustion and Emission Characteristics of a Heavy Duty Engine Fueled with Two Ternary Blends of N-Heptane/Iso-Octane and Toluene or Benzaldehyde

2016-04-05
2016-01-0998
In this work, the influences of aromatics on combustion and emission characteristics from a heavy-duty diesel engine under various loads and exhaust gas recirculation (EGR) conditions are investigated. Tests were performed on a modified single-cylinder, constant-speed and direct-injection diesel engine. An engine exhaust particle sizer (EEPS) was used in the experiments to measure the size distribution of engine-exhaust particle emissions in the range from 5.6 to 560 nm. Two ternary blends of n-heptane, iso-octane with either toluene or benzaldehyde denoted as TRF and CRF, were tested, diesel was also tested as a reference. Test results showed that TRF has the longest ignition delay, thus providing the largest premixed fraction which is beneficial to reduce soot. However, as the load increases, higher incylinder pressure and temperature make all test fuels burn easily, leading to shorter ignition delays and more diffusion combustion.
Technical Paper

Comparison of Hydrocarbon Measurement with FTIR and FID in a Dual Fuel Locomotive Engine

2016-04-05
2016-01-0978
Exhaust emissions of non-methane hydrocarbon (NMHC) and methane were measured from a Tier 3 dual-fuel demonstration locomotive running diesel-natural gas blend. Measurements were performed with the typical flame ionization detector (FID) method in accordance with EPA CFR Title 40 Part 1065 and with an alternative Fourier-Transform Infrared (FTIR) Spectroscopy method. Measurements were performed with and without oxidation catalyst exhaust aftertreatment. FTIR may have potential for improved accuracy over the FID when NMHC is dominated by light hydrocarbons. In the dual fuel tests, the FTIR measurement was 1-4% higher than the FID measurement of. NMHC results between the two methods differed considerably, in some cases reporting concentrations as much as four times those of the FID. However, in comparing these data it is important to note that the FTIR method has several advantages over the FID method, so the differences do not necessarily represent error in the FTIR.
Technical Paper

Design Optimization of An Integrated SCR System for EU V Heavy Duty Diesel Engines

2016-04-05
2016-01-0945
Selective Catalytic Reduction (SCR) based on urea water solution (UWS) has become a promising technology to reduce Nitrogen Oxides (NOx) emissions for mobile applications. However, urea may undergo incomplete evaporations, resulting in formation of solid deposits on the inner surfaces including walls and mixers, limiting the transformation of urea to ammonia and chemical reaction between NOx and ammonia. Numerous design parameters of SCR system affect the formation of urea deposits [1] ; they are: exhaust condition, injector type, injector mounting angle, geometrical configurations of mixer, injection rate and etc. Research has been available in urea deposits, mixers, urea injection rates and others [2,4,5,6]. In this paper, focus is placed on improving mixing structure design from baseline design of EU IV to EU V. On-road tests indicate that deposits are highly likely to occur near locations where spray and exhaust gas interact most.
Technical Paper

Degradation of DeNOx Performance of a Urea-SCR System in In-Use Heavy-Duty Vehicles Complying with the New Long-Term Regulation in Japan and Estimation of its Mechanism

2016-04-05
2016-01-0958
Degradation of the deNOx performance has been found in in-use heavy-duty vehicles with a urea-SCR system in Japan. The causes of the degradation were studied, and two major reasons are suggested here: HC poisoning and deactivation of pre-oxidation catalysts. Hydrocarbons that accumulated on the catalysts inhibited the catalysis. Although they were easily removed by a simple heat treatment, the treatment could only partially recover the original catalytic performance for the deNOx reaction. The unrecovered catalytic activity was found to result from the decrease in conversion of NO to NO2 on the pre-oxidation catalyst. The pre-oxidation catalyst was thus studied in detail by various techniques to reveal the causes of the degradation: Exhaust emission tests for in-use vehicles, effect of heat treatment on the urea-SCR systems, structural changes and chemical changes in active components during the deactivation were systematically investigated.
Technical Paper

Compact, Combined DOC/PM-SCR metal based Exhaust Aftertreatment System for a Hybrid Tugboat Application

2016-04-05
2016-01-0923
Since the new “Regulations for the Prevention of Air Pollution from Ships” of the International Maritime Organization (IMO; MARPOL Annex VI Tier III) became effective, new technologies in marine applications are needed to fulfill the exhaust-gas limits. The reduction rate of the permissible emissions in the emission control areas (ECA) is about 75 % from Tier II to Tier III. To meet these limits, it is necessary to take additional measures, such as installing a Selective Catalytic Reduction (SCR) system. Because harbors are specifically in focus regarding the air quality, a hybrid propulsion system (Diesel-electric) and Exhaust Aftertreatment (EAT) to reduce the emissions and the lifecycle costs by reducing the fuel consumption were planned back in 2012. With the goal in mind of decreasing all relevant emissions, the described compact EAT consists of a Diesel Oxidation Catalyst (DOC), a Particulate Matter (PM) removal and a SCR-catalyst.
Technical Paper

A Study of After-Treatment System for Heavy Duty Trucks at Low Temperature Conditions

2016-04-05
2016-01-0924
The conventional NOx after-treatment system could not perform sufficient NOx removal since exhaust gas temperature falls down by low-fuel-consumption and waste heat recovery of a diesel engine. In order to realize a new after-treatment system with high NOx conversion rate at a low catalyst temperature, studies on adopting an ozone generator (NO oxidization promotion) and a urea reformer (ammonia addition) into the Urea SCR (Selective Catalytic Reduction) system have been conducted.
Technical Paper

Four Season Field Aging for SCR on DPF (SDPF) on a Light Heavy Duty Application

2016-04-05
2016-01-0929
There is growing interest in application of SCR on DPF (SDPF) for light and heavy duty applications, particularly to provide improvements in cold start emissions, as well as improvements in system cost and packaging [1, 2, 3]. The first of systems containing SDPF are just coming to market, with additional introductions expected, particularly for light duty and non-road applications [4]. To provide real world testing for a new SDPF product design prior to availability of OEM SDPF applications, an SDPF and one SCR catalyst were substituted in place of the original two SCR catalysts and a catalyzed diesel particulate filter (CDPF) on a Ford F250 HD pickup. To ensure that the on-road emissions would be comparable to the production system replaced, and to make sure that the control system would be able to operate without detecting some difference in behavior and seeing this as a fault, initial chassis dynamometer work was done before putting the vehicle on the road.
Technical Paper

Power Distribution in Transmissions of Multi-Wheeled Vehicles

2016-04-05
2016-01-1103
The main indicators for mobility of a multipurpose wheeled vehicle are the maximum and average technical velocity (it is defined as the distance traveled divided by the time elapsed), and they are mainly determined by power-to-weight ratio and the parameters of the suspension. As our analysis shows, with the increase of the power-to-weight ratio of the vehicle and its weight, the growth rate of the velocity is reduced, and after reaching a certain value, the velocity remains almost constant. This is due to the fact that for operating conditions of the multi-purpose wheeled vehicle, movement on roads with different degrees of uneven distribution of the rolling resistance and adhesion, in both transverse and longitudinal directions, is typical.
Technical Paper

Investigations of Power Distribution in Transmissions of Heavy Trucks

2016-04-05
2016-01-1100
The main indicators for mobility of a multipurpose wheeled vehicle are the maximum and average technical velocity (it is defined as the distance traveled divided by the time elapsed), and they are mainly determined by power-to-weight ratio and the parameters of the suspension. As our analysis shows, with the increase of the power-toweight ratio of the vehicle and its weight, the growth rate of the velocity is reduced, and after reaching a certain value, the velocity remains almost constant. This is due to the fact that for operating conditions of the multi-purpose wheeled vehicle, movement on roads with different degrees of uneven distribution of the rolling resistance and adhesion, in both transverse and longitudinal directions, is typical.
X