Refine Your Search

Topic

Author

Search Results

Journal Article

Lightning Effects on Hydraulic Transport Elements in Composite Aircraft

2011-10-18
2011-01-2760
In this study, lightning effects on hydraulic transport elements in composite aircraft have been considered for the first time. Based on recent test results and analysis, several forms of possible structural damage and system component failures are presented. A unique approach in analysis has been taken to account that hydraulic transport elements, as a part of several aircraft systems, have a common interface with electrical wiring, and become complex electric networks. When an aircraft is exposed to a direct lightning strike, a metal skin on the wings and fuselage will conduct lightning currents in a way that only a small amount of induced electromagnetic energy will be present on hydraulic transport elements. So, in the past, hydraulic tubes, actuators, manifolds, and all other hydro-mechanical devices, as parts of various aircraft systems, have never been considered as lightning sensitive components.
Journal Article

Health Assessment of Liquid Cooling System in Aircrafts: Data Visualization, Reduction, Clustering, and Classification

2012-10-22
2012-01-2106
This paper addresses the issues of data reduction, visualization, clustering and classification for fault diagnosis and prognosis of the Liquid Cooling System (LCS) in an aircraft. LCS is a cooling system that consists of a left and a right loop, where each loop is composed of a variety of components including a heat exchanger, source control units, a compressor, and a pump. The LCS data and the fault correlation analysis used in the paper are provided by Hamilton Sundstrand (HS) - A United Technologies Company (UTC). This data set includes a variety of sensor measurements for system parameters including temperatures and pressures of different components, along with liquid levels and valve positions of the pumps and controllers. A graphical user interface (GUI) is developed in Matlab that facilitates extensive plotting of the parameters versus each other, and/or time to observe the trends in the data.
Technical Paper

Trade Study of an Interface for a Removable/Replaceable Thermal Micrometeoroid Garment

2008-06-29
2008-01-1990
Effective thermal and micrometeoroid protection as afforded by the Thermal Micrometeoroid Garment (TMG) is critical in achieving safe and efficient missions. It is also critical that the TMG does not increase torque or decreased range of motion which can cause crewmember discomfort, fatigue, and reduced efficiency. For future exploration missions, removable and replaceable TMGs will allow the use of different pressure garment protective covers and TMG configurations for launch, re-entry, 0-G Extra Vehicular Activity (EVA), and lunar surface EVA. A study was conducted with the goal of developing high Technology Readiness Level (TRL), scalable, interface design concepts for TMG systems. The affects of TMG segmentation on mobility and donning were assessed. Closure mechanisms were investigated and tested to determine their operability after exposure to lunar dust. A TMG configuration with the optimum number of segments and location of interfaces was selected for the Mark III spacesuit.
Technical Paper

Trade Study of an Exploration Cooling Garment

2008-06-29
2008-01-1994
A trade study was conducted with a goal to develop relatively high TRL design concepts for an Exploration Cooling Garment (ExCG) that can accommodate larger metabolic loads and maintain physiological limits of the crewmembers health and work efficiency during all phases of exploration missions without hindering mobility. Effective personal cooling through use of an ExCG is critical in achieving safe and efficient missions. Crew thermoregulation not only impacts comfort during suited operations but also directly affects human performance. Since the ExCG is intimately worn and interfaces with comfort items, it is also critical to overall crewmember physical comfort. Both thermal and physical comfort are essential for the long term, continuous wear expected of the ExCG.
Technical Paper

Helmet Exhalation Capture System (HECS) Sizing Evaluation for an Advanced Space Suit Portable Life Support System

2008-06-29
2008-01-2117
As part of NASA's initiative to develop an advanced portable life support system (PLSS), a baseline schematic has been chosen that includes gaseous oxygen in a closed circuit ventilation configuration. Supply oxygen enters the suit at the back of the helmet, passes over the astronaut's body, and is extracted at the astronaut's wrists and ankles through the liquid cooling and ventilation garment (LCVG). The extracted gases are then treated using a rapid cycling amine (RCA) system for carbon dioxide and water removal and activated carbon for trace gas removal before being mixed with makeup oxygen and reintroduced into the helmet. Thermal control is provided by a suit water membrane evaporator (SWME). As an extension of the original schematic development, NASA evaluated several Helmet Exhalation Capture System (HECS) configurations as alternatives to the baseline.
Technical Paper

Testing, Modeling and System Impact of Metabolic Heat Regenerated Temperature Swing Adsorption

2008-06-29
2008-01-2116
Metabolic heat regenerated temperature swing adsorption (MTSA) technology is being developed for removal and rejection of carbon dioxide (CO2) and heat from a portable life support system (PLSS) to the Martian environment. Previously, hardware was built and tested to demonstrate using heat from simulated, dry ventilation loop gas to affect the temperature swing required to regenerate an adsorbent used for CO2 removal. New testing has been performed using a moist, simulated ventilation loop gas to demonstrate the effects of water condensing and freezing in the heat exchanger during adsorbent regeneration. Also, the impact of MTSA on PLSS design was evaluated by performing thermal balances assuming a specific PLSS architecture. Results using NASA's Extravehicular Activity System Sizing Analysis Tool (EVAS_SAT), a PLSS system evaluation tool, are presented.
Technical Paper

ALSSAT Development Status

2009-07-12
2009-01-2533
The development of the Advanced Life Support (ALS) Sizing Analysis Tool (ALSSAT) using Microsoft® Excel was initiated by the Crew and Thermal Systems Division of the NASA Johnson Space Center (JSC) in 1997 to support the ALS and Exploration Offices in Environmental Control and Life Support System (ECLSS) design and studies. It aids the user in performing detailed sizing of the ECLSS for different combinations of Exploration Life Support (ELS) regenerative system technologies. This analysis tool will assist the user in performing ECLSS preliminary design and trade studies as well as system optimization efficiently and economically.
Technical Paper

Heat Exchanger Fouling Diagnosis for an Aircraft Air-Conditioning System

2013-09-17
2013-01-2250
This paper addresses the issue of fault diagnosis in the heat exchanger of an aircraft Air Conditioning System (ACS). The heat exchanger cools the air by transferring the heat to the ram-air. Due to a variety of biological, mechanical and chemical reasons, the heat exchanger may experience fouling conditions that reduces the efficiency and could considerably affect the functionality of the ACS. Since, the access to the heat exchanger is limited and time consuming, it is preferable to implement an early fault diagnosis technique that would facilitate Condition Based Maintenance (CBM). The main contribution of the paper is pre-flight fault assessment of the heat exchanger using a combined model-based and data-driven approach of fault diagnosis. A Simulink model of the ACS, that has been designed and validated by an industry partner, has been used for generation of sensor data for various fouling conditions.
Technical Paper

International Space Station (ISS) Major Constituent Analyzer (MCA) On-Orbit Performance

2006-07-17
2006-01-2092
This paper summarizes the first 5 plus years of on-orbit operation for the Major Constituent Analyzer (MCA). The MCA is an essential part of the International Space Station (ISS) Environmental Control and Life Support System (ECLSS). The MCA is a mass spectrometer instrument in the US Destiny Laboratory Module of the International Space Station. The MCA provides critical monitoring of six major atmospheric constituents (nitrogen (N2), oxygen (O2), hydrogen (H2), carbon dioxide (CO2), methane (CH4) and water vapor (H2O)) sampled continuously and automatically in all United States On-Orbit Segment (USOS) modules via the Sample Distribution System (SDS). Sample lines have been routed throughout the U.S. modules with valves to facilitate software-automated sequential sampling of the atmosphere in the various modules.
Technical Paper

Emergency Oxygen System Evaluation for Exploration PLSS Applications

2006-07-17
2006-01-2208
The Portable Life Support System (PLSS) emergency oxygen system is being reexamined for the next generation of suits. These suits will be used for transit to Low Earth Orbit, the Moon and to Mars as well as on the surface of the Moon and Mars. Currently, the plan is that there will be two different sets of suits, but there is a strong desire for commonality between them for construction purposes. The main purpose of this paper is to evaluate what the emergency PLSS requirements are and how they might best be implemented. Options under consideration are enlarging the tanks on the PLSS, finding an alternate method of storage/delivery, or providing additional O2 from an external source. The system that shows the most promise is the cryogenic oxygen system with a composite dewar which uses a buddy system to split the necessary oxygen between two astronauts.
Technical Paper

Sensory Prognostics and Management System (SPMS)

2012-10-22
2012-01-2095
The Sensory Prognostics and Management Systems (SPMS) program sponsored by the Federal Aviation Administration and Boeing developed and evaluated designs to integrate advanced diagnostic and prognostic (i.e., Integrated Vehicle Health Management (IVHM) or Health Management (HM)) capabilities onto commercial airplanes. The objective of the program was to propose an advanced HM system appropriate for legacy and new aircraft and examine the technical requirements and their ramifications on the current infrastructure and regulatory guidance. The program approach was to determine the attractive and feasible HM applications, the technologies that are required to cost effectively implement these applications, the technical and certification challenges, and the system level and business consequences of such a system.
Technical Paper

Development of an Amine-based System for Combined Carbon Dioxide, Humidity, and Trace Contaminant Control

2005-07-11
2005-01-2865
A number of amine-based carbon dioxide (CO2) removal systems have been developed for atmosphere revitalization in closed loop life support systems. Most recently, Hamilton Sundstrand has developed an amine-based sorbent, designated SA9T, possessing approximately 2-fold greater capacity compared to previous formulations. This new formulation has demonstrated applicability for controlling CO2 levels within vehicles and habitats as well as during extravehicular activity (EVA). Our current data demonstrates an amine-based system volume which is competitive with existing technologies which use metal oxides (Metox) and lithium hydroxide sorbents. Further enhancements in system performance can be realized by incorporating humidity and trace contaminant control functions within an amine-based atmosphere revitalization system. A 3-year effort to develop prototype hardware capable of removing CO2, H2O, and trace contaminants from a cabin atmosphere has been initiated.
Technical Paper

Accuracy Assessment of the Major Constituent Analyzer

2005-07-11
2005-01-2893
The Major Constituent Analyzer (MCA) is a mass spectrometer-based atmospheric monitoring instrument in the Laboratory Module of the International Space Station (ISS). The MCA is used for continuous environmental monitoring of 6 major gas constituents in the ISS atmosphere as well as safety-critical monitoring for special Environmental Control and Life Support (ECLS) operations such as Pre-Breathe in the Airlock for Extra-Vehicular Activities (EVAs) and oxygen re-pressurizations. For the latter, it is desirable to make most efficient use of consumables by transferring the maximum amount from O2 re-supply tanks on board the shuttle or Progress. The upper safety limit for O2 transfer is constrained by the MCA measurement error bands. A study was undertaken to tighten these error bands and afford NASA-Mission Operations Directorate (MOD) more operational flexibility.
Technical Paper

Corrosion Testing of Brazed Space Station IATCS Materials

2004-07-19
2004-01-2471
Increased nickel concentrations in the IATCS coolant prompted a study of the corrosion rates of nickel-brazed heat exchangers in the system. The testing has shown that corrosion is occurring in a silicon-rich intermetallic phase in the braze filler of coldplates and heat exchangers as the result of a decrease in the coolant pH brought about by cabin carbon dioxide permeation through polymeric flexhoses. Similar corrosion is occurring in the EMU de-ionized water loop. Certain heat exchangers and coldplates have more silicon-rich phase because of their manufacturing method, and those units produce more nickel corrosion product. Silver biocide additions did not induce pitting corrosion at silver precipitate sites.
Technical Paper

Carrier Injection Positive and Negative Sequence Impedances for Wound Field Synchronous Starter/Generators

2004-11-02
2004-01-3186
Carrier Injection Sensorless (CIS) rotor position estimation for electric machines depends on the rotor saliency “seen” from the stator terminals. Compared to permanent magnet and induction machines, wound field synchronous machine rotor saliency characteristics are more complex. At typical carrier frequencies subtransient characteristics dominate. Injecting positively rotating carrier voltages at the stator terminals of a machine having rotor saliency produces both positively and negatively rotating carrier currents. The impedances relating currents to injected carrier voltages are derived from the dq reference frame synchronous machine model. Analytical results are compared to simulation and limited test results for an aircraft starter/generator.
Technical Paper

Development of Pressure Swing Adsorption Technology for Spacesuit Carbon Dioxide and Humidity Removal

2006-07-17
2006-01-2203
Metabolically produced carbon dioxide (CO2) removal in spacesuit applications has traditionally been accomplished utilizing non-regenerative Lithium Hydroxide (LiOH) canisters. In recent years, regenerative Metal Oxide (MetOx) has been developed to replace the Extravehicular Mobility Unity (EMU) LiOH canister for extravehicular activity (EVA) missions in micro-gravity, however, MetOx may carry a significant weight burden for potential use in future Lunar or planetary EVA exploration missions. Additionally, both of these methods of CO2 removal have a finite capacity sized for the particular mission profile. Metabolically produced water vapor removal in spacesuits has historically been accomplished by a condensing heat exchanger within the ventilation process loop of the suit life support system.
Technical Paper

Development Status of Amine-based, Combined Humidity, CO2 and Trace Contaminant Control System for CEV

2006-07-17
2006-01-2192
Under a NASA-sponsored technology development project, a multi-disciplinary team consisting of industry, academia, and government organizations lead by Hamilton Sundstrand is developing an amine-based humidity and CO2 removal process and prototype equipment for Vision for Space Exploration (VSE) applications. Originally this project sought to research enhanced amine formulations and incorporate a trace contaminant control capability into the sorbent. In October 2005, NASA re-directed the project team to accelerate the delivery of hardware by approximately one year and emphasize deployment on board the Crew Exploration Vehicle (CEV) as the near-term developmental goal. Preliminary performance requirements were defined based on nominal and off-nominal conditions and the design effort was initiated using the baseline amine sorbent, SA9T.
Technical Paper

Measurement of Trace Water Vapor in a Carbon Dioxide Removal Assembly Product Stream

2004-07-19
2004-01-2444
The International Space Station Carbon Dioxide Removal Assembly (CDRA) uses regenerable adsorption technology to remove carbon dioxide (CO2) from cabin air. CO2 product water vapor measurements from a CDRA test bed unit at the NASA Marshall Space Flight Center were made using a tunable infrared diode laser differential absorption spectrometer (TILDAS) provided by NASA Glenn Research Center. The TILDAS instrument exceeded all the test specifications, including sensitivity, dynamic range, time response, and unattended operation. During the CO2 desorption phase, water vapor concentrations as low as 5 ppmv were observed near the peak of CO2 evolution, rising to levels of ∼40 ppmv at the end of a cycle. Periods of high water concentration (>100 ppmv) were detected and shown to be caused by an experimental artifact.
Technical Paper

Development of a Miniaturized High Intensity Cryogenic Flow Boiler

2002-07-15
2002-01-2408
An extremely compact heat exchanger is being developed which can boil cryogenic fluids with a liquid heat source at temperatures close to its freezing point. Freezing of the heat source fluid, e.g. water is precluded by the normal flow arrangement. Boiling and superheating of the cryogen occurs as the fluid approaches the heat source in a stack of bonded jet-array laminations. This heat exchanger technology is important in many applications where the storage of fluids at cryogenic temperatures offers substantial advantages in terms of system weight and volume. Often, as in several advanced portable life support system concepts, the advantages include the use of the cryogen as a heat sink in system thermal management. Realizing this benefit and safely conditioning the stored fluid for use requires effective heat transfer between the cryogen and a secondary heat transport fluid.
Technical Paper

Feasibility Study of a Next-Generation Submarine Atmosphere Monitoring System

2004-07-19
2004-01-2268
Atmospheric monitoring is one of the most important elements in life support aboard U.S. Navy nuclear submarines. The Central Atmosphere Monitoring Systems have reliably served the U.S. Navy by accurately monitoring life gases and contaminants for nearly 30 years. However, as new knowledge of chemical effects on human health increases, the demand for monitoring additional compounds in these closed environments is also increasing. As a result, expanded capability for detecting trace compounds becomes more important and a next-generation monitoring system is warranted. In addition to improved analytical performance, the trend for submarine operation is to increase the degree of distribution and automation to minimize the resources needed for operation and maintenance. It is therefore desirable to incorporate the monitoring instrumentation into the atmosphere control system to provide real-time feedback and automated control.
X