Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Space Station Freedom Viewed as a “Tight Building”

1990-07-01
901382
The Space Station Freedom (SSF), with a 30-year projected lifetime and a completely closed-loop Environmental Control and Life Support System (ECLSS), is perhaps the ultimate “Tight Building.” Recognizing the potential for the development of “Tight Building Syndrome” (TBS), and initiating actions to minimize possible TBS occurrences on SSF, requires a multidisciplinary approach that begins with appropriate design concerns and ends with detection and control measures on board SSF. This paper will present a brief summary of current experience with TBS on Earth. While many of the circumstances and methodologies garnered from investigating tight buildings on Earth are similar to those that might be encountered aboard SSF, the Station also presents a unique environment and a special set of constraints which will require an adaptation of previous protocols. Air contamination, including volatile organic compounds and microorganisms, will be the focus of the discussion.
Technical Paper

Microbial Colonization of Closed Life Support Chambers

1997-07-01
972414
The first two phases of the Lunar-Mars Life Support Test Project [LMLSTP] involved housing human volunteers in closed chambers that mimic future extraterrestrial life support systems. The Phase I test involved one person living for 15 days in a chamber with wheat as the primary means of air revitalization. The Phase II test involved 4 people living for 30 days in a chamber with physical/chemical air revitalization and waste water recycling. The consequences of closure on microbial ecology and the influence that microbes had on these closed environmental life support systems were determined during both tests. The air, water, and surfaces of each chamber were sampled for microbial content before, during, and after each test. The numbers of microbes on the Phase I habitation chamber surfaces increased with length of occupation.
Technical Paper

Viral Challenge of an Advanced Life Support Water Treatment System

1997-07-01
972413
The ability of the water recovery system (WRS) designed for Phase II of the Lunar-Mars Life Support Test Project to remove viral contaminants was tested by challenging the system with bacteriophages MS-2 and PRD-1. Urine-pretreatment and ultrafiltration/reverse osmosis (UF/RO) steps each reduced the combined density of both bacteriophages from >109 to <1 Plaque-Forming Units (PFU)/100 mL. UF/RO also reduced the bacterial density from 108 to 107 Colony-Forming Units (CFU)/100 mL. Before UF/RO, the predominant species of bacteria in the water were Acinetobacter calcoacetious and Klebsiella pneumoniae; afterward, the predominant species were Burkholderia cepacia and B. picketti. The removal of the bacteriophages and the difference in predominant bacteria across the UF/RO step suggest that the Burkholderia had been established downstream of the UF/RO membranes before the test began.
Technical Paper

Water Analysis Results from Phase II of the NASA Early Human Testing Initiative 30-Day Closed Chamber Test

1997-07-01
972555
An important milestone in the ongoing effort by NASA to develop and refine closed-loop water recycling systems for human space flight was reached during the summer of 1996 with the successful completion of Phase II of the Lunar Mars Life Support Testing Program at Johnson Space Center. Part of Phase II involved testing a water-recycling system in a closed test chamber continuously occupied by four human subjects for thirty days. The Phase II crew began the test with a supply of water that had been processed and certified for human use. As the test progressed, humidity condensate, urine, and wastewater from personal hygiene and housekeeping activities were reclaimed and reused several times. Samples were collected from various points in the reclamation process during the thirty day test. The data verified the water-processing hardware can reliably remove wastewater contaminants and produce reclaimed water that meets NASA standards for hygiene- and potable-quality water.
Technical Paper

Microbiology Standards for the International Space Station

1995-07-01
951682
The Crew Health System (CHeCS) plays a pivotal role in monitoring the life-support activities that maintain space station environmental quality and crew safety. Sampling hardware will be used in specific protocols to monitor the microbial dynamics of the closed spacecraft environment. NASA flight experience, ground-based studies, consultations with clinical and environmental microbiologists, and panel discussions with experts in engineering, flight-crew operations, microbiology, toxicology, and water quality systems all have been integral to the revision of in-flight microbial standards. The new standards for air and internal surfaces differentiate between bacterial and fungal loads, unlike previous standards that relied on total microbial counts. Microorganisms that must not be present in air or water or on surfaces also are listed.
X