Refine Your Search

Topic

Search Results

Technical Paper

Real-time Thermal Observer for Electric Machines

2006-11-07
2006-01-3102
A temperature estimation algorithm (thermal observer) that provides accurate estimates of the thermal states of an electric machine in real time is presented. The thermal observer is designed to be a Kalman filter that combines thermal state predictions from a lumped-parameter thermal model of the electric machine with temperature measurements from a single external temperature sensor. An analysis based on the error covariance matrix of the Kalman filter is presented to guide the selection of the best sensor location. The thermal observer performance is demonstrated using a 3.8 kW permanent-magnet machine. Comparison of the thermal observer estimates and the actual temperatures demonstrate that this approach can provide accurate knowledge of the machine's thermal states despite modeling uncertainty and unknown initial machine thermal states.
Technical Paper

Modeling and Simulation of an Electric Warship Integrated Engineering Plant

2006-11-07
2006-01-3050
A layered approach to the simulation of dynamically interdependent systems is presented. In particular, the approach is applied to the integrated engineering plant of a notional all-electric warship. The models and parameters of the notional ship are presented herein. This approach is used to study disruptions to the integrated engineering plant caused by anti-ship missiles. Example simulation results establish the effectiveness of this approach in examining the propagation of faults and cascading failures throughout a dynamically interdependent system of systems.
Technical Paper

Thermal Interface Materials Based on Anchored Carbon Nanotubes

2007-07-09
2007-01-3127
The new devices and missions to achieve the aims of NASA's Science Mission Directorate (SMD) are creating increasingly demanding thermal environments and applications. In particular, the low conductance of metal-to-metal interfaces used in the thermal switches lengthen the cool-down phase and resource usage for spacecraft instruments. During this work, we developed and tested a vacuum-compatible, durable, heat-conduction interface that employs carbon nanotube (CNT) arrays directly anchored on the mating metal surfaces via microwave plasma-enhanced, chemical vapor deposition (PECVD). We demonstrated that CNT-based thermal interface materials have the potential to exceed the performance of currently available options for thermal switches and other applications.
Technical Paper

Balloon Launched UAV with Nested Wing for Near Space Applications

2007-09-17
2007-01-3910
There has always been, from the very first UAV, a need for providing cost-effective methods of deploying unmanned aircraft systems at high altitudes. Missions for UAVs at high altitudes are used to conduct atmospheric research, perform global mapping missions, collect remote sensing data, and establish long range communications networks. The team of Gevers Aircraft, Technology Management Group, and Purdue University have designed an innovative balloon launched UAV for these near space applications. A UAV (Payload Return Vehicle) with a nested morphing wing was designed in order to meet the challenges of high altitude flight, and long range and endurance without the need for descent rate control with rockets or a feathering mode.
Technical Paper

Simulation of MADMEL Power Systems Components

1998-04-21
981258
Detailed computer models of system components for More Electric Aircraft have been developed using the Advanced Control System Language (ACSL) and its graphical front-end, Graphic Modeller. Among the devices modeled are a wound-rotor synchronous generator with parallel bridge-rectifier outputs, a switched-reluctance generator, and various loads including a DC-DC converter, an inverter-driven induction motor, and an electro-hydrostatic actuator. Results from the simulations are presented together with corroborating experimental test results.
Technical Paper

An Automated State Model Generation Algorithm for Simulation/Analysis of Power Systems with Power Electronic Components

1998-04-21
981256
In this paper, a recently-developed algorithmic method of deriving the state equations of power systems containing power electronic components is described. Therein the system is described by the pertinent branch parameters and the circuit topology; however, unlike circuit-based algorithms, the difference equations are not implemented at the branch level. Instead, the composite system state equations are established. A demonstration of the computer implementation of this algorithm to model a variable-speed, constant-frequency aircraft generation system is described. Because of the large number of states and complexity of the system, particular attention is placed on the development of a model structure which provides optimal simulation efficiency.
Technical Paper

Aggregate System Level Material Analysis for Advanced Life Support Systems

2003-07-07
2003-01-2362
In this paper, an aggregate system level modeling and analysis framework is proposed to facilitate the integration and design of advanced life support systems (ALSS). As in process design, the goal is to choose values for the degrees of freedom that achieve the best overall ALSS behavior without violating any system constraints. At the most fundamental level, this effort will identify the constraints and degrees of freedom associated with each subsystem and provide estimates of the system behavior and interactions involved in ALSS. This work is intended to be a starting point for developing insights into ALSS from a systems engineering point of view. At this level, simple aggregate static input/output mapping subsystem models from existing data and the NASA ALS BVAD document are used to debug the model and demonstrate feasibility.
Technical Paper

Wastestream Characterization for a Packed Bed Biofilter Intended for Simultaneous Treatment of Graywater and Air in an Advanced Life Support System

2003-07-07
2003-01-2555
An important function of life support systems developed for a long duration human mission to Mars is the ability to recycle water and air. The Bio-Regenerative Environmental Air Treatment for Health (BREATHe) is part of a multicomponent life support system and will simultaneously treat wastewater and air. The BREATHe system will consist of packed bed biofilm reactors. Model waste streams will be used for experiments conducted during the design phase of the BREATHe system. This paper summarizes expected characteristics of water and air waste steams that would be generated by a crew of six during a human mission to Mars. In addition to waste air and water generation rates, the chemical composition of each waste stream is defined. Specifically, chemical constituents expected to be present in hygiene wastewater, dishwater, laundry water, atmospheric condensate, and cabin air are presented.
Technical Paper

Stability Analysis of a DC Power Electronics Based Distribution System

2002-10-29
2002-01-3184
This paper illustrates the application of the generalized immittance space approach to the analysis of multi-bus interconnected power electronics based power distribution system. The paper sets forth the basic classifications of power converters in regard to stability analysis, a set of network reduction transformations, and illustrates the use of these reductions in order to analyze the stability of a zonal dc distribution system.
Technical Paper

Analysis and Simulation of a UAV Power System

2002-10-29
2002-01-3175
Models for the components of a long-duration UAV power system are set forth. The models include the solar array, solar array power converter, fuel cell and electrolyzer system and corresponding power converter, and propulsion load. Based on these models, a power management control is derived, which when coupled with the component models, are used to simulate power system performance during start-up, through a day-night cycle, and through a solar eclipse.
Technical Paper

Analysis of Switched Capacitive Machines for Aerospace Applications

2002-10-29
2002-01-3182
Electric machinery is typically based upon the interaction of magnetic fields and current to produce electromagnetic force or torque. However, force and torque can also be produced through the use of electric fields. The purpose of this investigation is to briefly analyze the use of a switched capacitance electric field based machine to see if it may have aerospace applications for use as either propulsion motor for unmanned aerospace vehicle (UAV) or lightweight flywheel applications for aerospace applications. It is shown that although its use as a hub propulsion motor is not feasible, it may be a candidate for use in a power flywheel energy storage system.
Technical Paper

Polytopic Modeling and Lyapunov Stability Analysis of Power Electronics Systems

2002-10-29
2002-01-3203
Power electronics based power distribution systems are inherently nonlinear often behaving as constant power loads. Stability analysis of such systems typically is limited to local behavior. Herein polytopic modeling techniques are presented. Classification of polytopic model equilibrium points is made and methods of determining uniform asymptotic stability are presented.
Technical Paper

NASA's On-line Project Information System (OPIS) Attributes and Implementation

2006-07-17
2006-01-2190
The On-line Project Information System (OPIS) is a LAMP-based (Linux, Apache, MySQL, PHP) system being developed at NASA Ames Research Center to improve Agency information transfer and data availability, largely for improvement of system analysis and engineering. The tool will enable users to investigate NASA technology development efforts, connect with experts, and access technology development data. OPIS is currently being developed for NASA's Exploration Life Support (ELS) Project. Within OPIS, NASA ELS Managers assign projects to Principal Investigators (PI), track responsible individuals and institutions, and designate reporting assignments. Each PI populates a “Project Page” with a project overview, team member information, files, citations, and images. PI's may also delegate on-line report viewing and editing privileges to specific team members. Users can browse or search for project and member information.
Technical Paper

Water and Energy Transport for Crops under Different Lighting Conditions

2006-07-17
2006-01-2028
When high-intensity discharge (HID) electric lamps are used for plant growth, system inefficiencies occur due to an inability to effectively target light to all photosynthetic tissues of a growing crop stand, especially when it is closed with respect to light penetration. To maintain acceptable crop productivity, light levels typically are increased thus increasing heat loads on the plants. Evapotranspiration (ET) or transparent thermal barrier systems are subsequently required to maintain thermal balance, and power-intensive condensers are used to recover the evaporated water for reuse in closed systems. By accurately targeting light to plant tissues, electric lamps can be operated at lower power settings and produce less heat. With lower power and heat loads, less energy is used for plant growth, and possibly less water is evapotranspired. By combining these effects, a considerable energy savings is possible.
Technical Paper

Simultaneous Biodegradation of a Two-Phase Fluid: Discolored Biofilm Issues

2006-07-17
2006-01-2256
Three replicate aerobic-heterotrophic biotrickling filters were designed to promote the simultaneous biodegradation of graywater and a waste gas containing NH3, H2S and CO2. Upon visual observation of discolored solids, it was originally hypothesized that gas-phase CO2 concentrations were excessive, causing regions of anoxic zones to form within the biotrickling filters. Observed discolored (black) biofilm of this nature is typically assumed to be either lysed bacterial cells or anaerobic regions, implying alteration of operational conditions. Solid (biofilm) samples were collected in the presence and absence of gas-phase wastestream(s) to determine if the gas-phase contaminants were contributing to the solid-phase discoloration. Two sets of experiments (shaker flask and solids characterization) were conduced to determine the nature of the discolored solids. Results indicated that the discolored solids were neither anaerobic bacteria nor lysed cells.
Technical Paper

Inductive or Magnetic Recharging for Small UAVs

2012-10-22
2012-01-2115
We developed a wireless, contact free power transfer mechanism that is safer and robust to imperfect alignment on landing at the base station and that avoid trips back to the launch sites for recharging off power lines. A magnetic field is created using inductor coils on both the transmitting and receiving sides. We use small induction coils around the UAV to increase efficiency and decrease interference. By locating several of these small inductive coils around our quad-rotor UAV, faster recharging is accomplished in comparison to the use of just one coil. In addition, more coils permit larger voltages for more efficient power transfers. On the base station, several folding robotic arms will be used to realign the receiver coils over the transmitter coils. After adequate recharging as measured by battery voltages or power consumption at the base station, the UAV sends a signal to the base station to open the dome to fly away.
Technical Paper

Simulation of Air Quality in ALS System with Biofiltration

2005-07-11
2005-01-3111
Most of the gaseous contaminants generated inside ALS (Advanced Life Support) cabins can be degraded to some degree by microbial degradation in a biofilter. The entry of biofiltration techniques into ALS will most likely involve integration with existing physico-chemical methods. However, in this study, cabin air quality treated by only biofiltration was predicted using the one-box and biofiltration models. Based on BVAD (Baseline Values and Assumptions Document) and SMAC (Spacecraft Maximum Allowable Concentrations), ammonia and carbon monoxide will be the critical compounds for biofilter design and control. Experimentation is needed to identify the pertinent microbial parameters and removal efficiency of carbon monoxide and to validate the results of this preliminary investigation.
Technical Paper

Evaluation of Biological Trickling Filter Performance for Graywater Treatment in ALS Systems

2005-07-11
2005-01-3023
The Bioregenerative Air Treatment for Health system has been proposed for Advanced Life Support (ALS) planetary base applications. The system will be operated as a biotrickling filter to simultaneously treat graywater and waste gas. Preliminary experiments have focused on carbon removal from a graywater simulant. Six bench scale biotrickling filter reactors were constructed and monitored continuously. After a reactor startup phase of 40 days, the average total organic carbon (TOC) removal for reactors packed with Tri-packs® packing material was 62%. A second set of experiments was designed to evaluate TOC removal using different packing materials (Bee-cell and Biobale). It was hypothesized that the alternative packing materials would reduce the effects of channeling in the reactors, thus improving TOC removal. However, TOC removal did not significantly improve during the second set of experiments.
Technical Paper

Urine Processing for Water Recovery via Freeze Concentration

2005-07-11
2005-01-3032
Resource recovery, including that of urine water extraction, is one of the most crucial aspects of long-term life support in interplanetary space travel. This paper will consequently examine an innovative approach to processing raw, undiluted urine based on low-temperature freezing. This strategy is uniquely different from NASA's current emphasis on either ‘integrated’ (co-treatment of mixed urine, grey, and condensate waters) or ‘high-temperature’ (i.e., VCD [vapor compression distillation] or VPCAR [vapor phase catalytic ammonia removal]) processing strategies, whereby this liquid freeze-thaw (LiFT) procedure would avoid both chemical and microbial cross-contamination concerns while at the same time securing highly desirable reductions in likely ESM levels.
Technical Paper

A New Lab for Testing Biofiltration for Advanced Life Support

2005-07-11
2005-01-3060
Bioregenerative systems for removal of gaseous contaminants are desired for long-term space missions to reduce the equivalent system mass of the air cleaning system. This paper describes an innovative design of a new biofiltration test lab for investigating the capability of biofiltration process for removal of ersatz multi-component gaseous streams representative of spacecraft contaminants released during long-term space travel. The lab setup allows a total of 24 bioreactors to receive identical inlet waste streams at stable contaminant concentrations via use of permeations ovens, needle valves, precision orifices, etc. A unique set of hardware including a Fourier Transform Infrared (FTIR) spectrometer, and a data acquisition and control system using LabVIEW™ software allows automatic, continuous, and real-time gas monitoring and data collection for the 24 bioreactors. This lab setup allows powerful factorial experimental design.
X