Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Design and Preliminary Test Results from a Second Generation Power-Assisted Space Suit Glove Joint

1998-07-13
981674
Near to long term goals in the nation's space program would benefit from a significant reduction of the fatigue associated with manual tasks performed by suited astronauts, and the corresponding increase in the comfort, safety, and productivity of EVA operations this would enable. To this end, the University of Maryland Space Systems Laboratory and ILC Dover Inc. have developed an electromechanical, power-assisted EVA glove which has demonstrated the ability to substantially reduce manual fatigue while simultaneously increasing range of motion. The lessons learned from the construction and testing of this initial prototype have been used to guide a second generation design for this power-assist concept, which achieves comparable or superior performance with significantly less hardware and power consumption. This paper describes the new, second generation power-assist mechanism, reviewing the relevant design issues and comparing its performance with the initial design.
Technical Paper

Smoke Particle Sizes in Low-Gravity and Implications for Spacecraft Smoke Detector Design

2009-07-12
2009-01-2468
This paper presents results from a smoke detection experiment entitled Smoke Aerosol Measurement Experiment (SAME) which was conducted in the Microgravity Science Glovebox on the International Space Station (ISS) during Expedition 15. Five different materials representative of those found in spacecraft were pyrolyzed at temperatures below the ignition point with conditions controlled to provide repeatable sample surface temperatures and air flow conditions. The sample materials were Teflon®, Kapton®, cellulose, silicone rubber and dibutylphthalate. The transport time from the smoke source to the detector was simulated by holding the smoke in an aging chamber for times ranging from 10 to1800 seconds. Smoke particle samples were collected on Transmission Electron Microscope (TEM) grids for post-flight analysis.
Technical Paper

Determining Optimum Redesign Plans for Avionics Based on Electronic Part Obsolescence Forecasts

2002-11-05
2002-01-3012
Many electronic parts have life cycles that are shorter than the life cycle of the product they are in. Life cycle mismatches caused by the obsolescence of electronic parts can result in significantly sustainment costs for long life systems. In particular, avionics often encounters part obsolescence problems before being fielded and nearly always experience part obsolescence problems during their field life. This paper presents a methodology for determining the optimum design refresh (redesign) schedule for long field life electronic systems based on forecasted electronic part obsolescence and a mix of obsolescence mitigation approaches ranging from lifetime buys to part substitution.
Technical Paper

Morphing Upper Torso: A Novel Concept in EVA Suit Design

2006-07-17
2006-01-2142
The University of Maryland Space Systems Laboratory and ILC Dover LP have developed a novel concept: a soft pressure garment that can be dynamically reconfigured to tailor its shape properties to the wearer and the desired task set. This underlying concept has been applied to the upper torso of a rear entry suit, in which the helmet ring, waist ring and two shoulder rings make up a system of four interconnected parallel manipulators with tensile links. This configuration allows the dynamic control of both the position and orientation of each of the four rings, enabling modification of critical sizing dimensions such as the inter-scye distance, as well as task-specific orientations such as helmet, scye and waist bearing angles. Half-scale and full-scale experimental models as well as an analytical inverse kinematics model were used to examine the interconnectedness of the plates, the role of external forces generated by pressurized fabric, and the controllability of the system.
X