Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Hydrogen Advanced Loop Heat Pipe

2007-07-09
2007-01-3194
Passive cooling transport in the cryogenic temperature regime still remains a challenging task since problems regarding parasitic heat gains from the surrounding have not been resolved satisfactorily. A recently-introduced concept of Advanced Loop Heat Pipe (or ALHP) had demonstrated an ability to manage “excessive” vapor generation in the compensation chamber. Nitrogen and Neon were successfully utilized as the working fluids to provide cryocooling transports in the temperature range of 80-120K and 30-40K, respectively. A Hydrogen ALHP in 2004 became the first capillary-pumped system to operate in the 20-30K range. This paper will present the ALHP technology in general and the detailed description of the research program/test results in particular.
Technical Paper

Loop Heat Pipe Operating Temperature Dependence on Liquid Line Return Temperature

2004-07-19
2004-01-2506
A Loop Heat Pipe (LHP) is a passive two-phase heat transfer device developed and successfully employed to cool spacecraft (satellite) electronics. The intrinsic benefits of this technology (lightweight, small volume, high thermal conductance) make it an attractive potential solution to many problems in ground vehicle thermal management. As most published LHP research has focused on cooling orbiting spacecraft components, there is little knowledge of how LHPs perform under the temperature extremes (−40°C to 40°C) and diurnal/seasonal fluctuations anticipated with terrestrial applications. Ambient temperature extremes mandate consideration of transport line heat exchange with the surroundings (parasitic losses/gains). This paper presents results from an experimental investigation of liquid line return temperature impact on system performance for sink temperatures from −30°C to 40°C and evaporator loads up to 700 Watts.
X