Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

A Study on the Elements Recycled in the Vegetable Supplying System of a Lunar Base CELSS

1994-06-01
941497
Selected vegetables for life support are continuously produced in the lunar farming module. Inedible parts of the vegetables are decomposed and provided as the fertilizer elements for the next vegetables. In this report, contained elements in their inedible mass for recyclingare discussed for each of the four vegetables. Elements and concentration of cultural liquid which are required by each vegetable are surveyed as well. Adjustment of decomposition liquid is discussed in view of transforming inedible vegetable to cultural liquid. Authors are proposing wet oxidization as one of the decomposition methods for these inedible parts. Some adjusting sub-system is necessary here, since elements and their concentration in decomposition liquid is not enough to reproduce vegetables. This report aims to clarify the composition of a vegetable production system for an eight-member
Technical Paper

Mineral Recovery System in a CEEF

1994-06-01
941499
We propose a new recovery system for NaCl from human urine. The system has an electrodialysis (ED) part and a crystallization part. Separation and concentration characteristics of the system are discussed for fundamental experiments of the ED and crystallization parts. Concentrated NaCl-KCl mixed solution is obtained using the ED process from simulated oxidized urine and sweat which include Ca2+ and S042- ions. Then, the crystallization process is used to separate about 80% of the NaCl from the ED treated solution. The experimental studies indicate that the mineral recovery system we proposed can recover NaCl from waste water of a CEEF.
Technical Paper

Material Circulation Design Based on Organic Matter Analysis of Edible and Inedible Parts of Plants for CEEF

1996-07-01
961414
In order to verify the material circulation design for a Closed Ecology Experiment Facilities, CEEF, the organic element analysis of edible and inedible parts of the major candidate plants (rice, soybean, sesame and komatsuna (Brassica campestris)) has been carried out experimentally and by using food analysis data. In the experiment, rice, soybean and sesame were cultivated by hydroponics and soil culture for this purpose. The organic element analysis data from the food analysis data were made using empirical chemical equations formulated as to major nutriments by Volk and Rummel. The experimental results showed good agreement with those obtained from the food analysis data. Komatsuna has high nitrogen content. Inedible parts of rice, soybean and sesame have almost the same constituent ratio. The edible part of soybean contains five times as much nitrogen as its inedible part. Rice shows no significant difference between the edible and inedible parts.
Technical Paper

CELSS Experiment Model and Design Concept of Gas Recycle System

1985-07-01
851393
In order to prolong the duration of manned missions around the earth and to expand the human existing region from the earth to other planets such as a Lunar Base or a manned Mars flight mission, the CELSS becomes an essential factor of the future technology to be developed through utilization of Space Station. The preliminary SE&I (System Engineering and Integration) efforts regarding CELSS have been carried out by the Japanese CELSS concept study group for clarifying the feasibility of hardware development for Space Station Experiments and for getting the time phased mission sets after Fy 1992. The results of these studies are breifly summarized and thereafter, the design and utilization methods of a Gas Recycle System for CELSS experiments are discussed.
Technical Paper

Plant Nutrient Solution Production Subsystem and Mineral Recycling in CEEF

2000-07-10
2000-01-2335
In the Closed Ecology Experiment Facilities (CEEF), waste materials such as plant inedible parts, feces and urine of animal and human, and garbage are to be decomposed to inorganic materials by a physical and chemical (P/C) process; Wet Oxidation (W/O). It is known that significant part of nitrogen (N) in the waste materials is reduced to gaseous nitrogen (N2) through W/O process. There is also some deposition of minerals such as iron (Fe) and phosphorous (P) through W/O process. Nitrogen Fixation Subsystem (NFS) produces ammonia (NH3) which is one of end products of NFS, from N2 separated from module air and hydrogen (H2) derived from electrolyses of water, and also produces nitrate (HNO3) from a part of the NH3 and oxygen (O2) derived from electrolyses of water. As another end product of NFS, ammonium nitrate (NH4NO3) is produced from the HNO3 and a part of the NH3.
X