Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Life Support Concept in Lunar Base

1991-07-01
911431
Lunar base construction study has been conducted under the sponsorship of many Japanese industries to amend the man tended lunar outpost study carried by NASDA. Permanent lunar base construction is to be constrained by the ability of the usable transportation system carrying the basic modules composing lunar base itself. Based upon the experiences of Antarctic Research Expedition and of designing International Space Station now going on it was assumed the initial permanent lunar base has to be composed of two habitats and one power module for letting possible to alive 8 crews, and has to be expanded by adding three or four modules in every year for improving the easiness of livingness. In early stage of construction, crew members have to live and work using only two habitat modules with getting the electric power from power module, therefore the minimum self support functions except the food and oxygen supplying have to be attached to the habitat modules.
Technical Paper

Considerations of Material Circulation in CEEF Based on the Recent Operation Strategy

2003-07-07
2003-01-2453
In the Closed Ecology Experiment Facilities (CEEF), with integrating the Closed Plantation Experiment Facilities (CPEF) and the Closed Animal Breading & Habitation Facilities (CABHF), closed habitation experiments without material exchange with the outside will be conducted after the 2005 fiscal year. Cultivation experiments of about 30 crops and the integrating test of the material circulation system required for the closed habitation experiments have been performed since 2000 fiscal year. Using data reported in these experiments, material circulation in CEEF is simulated based on the recent operation strategy, and the storage capacity needed for the buffer of an air processing subsystem was estimated. In order for two humans to dwell over 120 days, the storage capacities of the carbon dioxide tank, the oxygen tank, and the waste gas tank in CPEF, and the carbon dioxide tank and the oxygen tank in CABHF are 820 g, 2830 g, 4425 g, 1780 g, and 1792 g, respectively.
Technical Paper

Performance Test Data of Wet Oxidation Plant for CEEF - CEEF: Controlled Ecology Experiment Facilities

1996-07-01
961558
This waste management process must be capable of treating the various wastes generated within Controlled Ecology Experiment Facilities (CEEF) and operate effectively in and environment in which carbon, oxygen, nitrogen, salts, and other important minerals, exit. The catalytic Wet Oxidation Process (W/O Process) is regarded to be the most feasible candidate process for such waste management. This paper clarifies the performance data and the design data of the actual device. By applying these comparison data, for example, water balance, insoluble part balance, organic part balance, and inorganic balance for CEEF, we were also able to confirm the usefulness and applicability of the actual Wet Oxidation Device.
Technical Paper

Material Circulation Design Based on Organic Matter Analysis of Edible and Inedible Parts of Plants for CEEF

1996-07-01
961414
In order to verify the material circulation design for a Closed Ecology Experiment Facilities, CEEF, the organic element analysis of edible and inedible parts of the major candidate plants (rice, soybean, sesame and komatsuna (Brassica campestris)) has been carried out experimentally and by using food analysis data. In the experiment, rice, soybean and sesame were cultivated by hydroponics and soil culture for this purpose. The organic element analysis data from the food analysis data were made using empirical chemical equations formulated as to major nutriments by Volk and Rummel. The experimental results showed good agreement with those obtained from the food analysis data. Komatsuna has high nitrogen content. Inedible parts of rice, soybean and sesame have almost the same constituent ratio. The edible part of soybean contains five times as much nitrogen as its inedible part. Rice shows no significant difference between the edible and inedible parts.
X