Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Results of Multifunctional Condensing Heat Exchanger for Water Recovery Applications

2009-07-12
2009-01-2383
Humidity control within confined spaces is of great importance for current NASA environmental control systems and future exploration applications. The engineered multifunction surfaces (MFS) developed by ORBITEC is a technology that produces hydrophilic and antimicrobial surface properties on a variety of substrate materials. These properties combined with capillary geometry create the basis for a passive condensing heat exchanger (CHX) for applications in reduced gravity environments, eliminating the need for mechanical separators and particulate-based coatings. The technology may also be used to produce hydrophilic and biocidal surface properties on a range of materials for a variety of applications where bacteria and biofilms proliferate, and surface wetting is beneficial.
Journal Article

Mars Science Laboratory Mechanically Pumped Fluid Loop for Thermal Control - Design, Implementation, and Testing

2009-07-12
2009-01-2437
The Mars Science Laboratory (MSL) mission to land a large rover on Mars is being prepared for Launch in 2011. A Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) on the rover provides an electrical power of 110 W for use in the rover and the science payload. Unlike the solar arrays, MMRTG provides a constant electrical power during both day and night for all seasons (year around) and latitudes. The MMRTG dissipates about 2000 W of waste heat to produce the desired electrical power. One of the challenges for MSL Rover is the thermal management of the large amount of MMRTG waste heat. During operations on the surface of Mars this heat can be harnessed to maintain the rover and the science payload within their allowable limits during nights and winters without the use of electrical survival heaters. A mechanically pumped fluid loop heat rejection and recovery system (HRS) is used to pick up some of this waste heat and supply it to the rover and payload.
Journal Article

A History of Space Toxicology Mishaps: Lessons Learned and Risk Management

2009-07-12
2009-01-2591
After several decades of human spaceflight, the community of space-faring nations has accumulated a diverse and sometimes harrowing history of toxicological events that have plagued human space endeavors almost from the very beginning. Some lessons have been learned in ground-based test beds and others were discovered the hard way - when human lives were at stake in space. From such lessons one can build a risk-management framework for toxicological events to minimize the probability of a harmful exposure, while recognizing that we cannot predict all possible events. Space toxicologists have learned that relatively harmless compounds can be converted by air revitalization systems into compounds that cause serious harm to the crew.
Journal Article

Analysis of Convective Heat Transfer in the Orbiter Middeck for the Shuttle Rescue Mission

2009-07-12
2009-01-2550
The paper presents the results of a CFD study for predictions of ventilation characteristics and convective heat transfer within the Shuttle Orbiter middeck cabin in the presence of seven suited crewmember simulation and Individual Cooling Units (ICU). For two ICU arrangements considered, the thermal environmental conditions directly affecting the ICU performance have been defined for landing operation. These data would allow for validation of the ICU arrangement optimization.
Journal Article

Evaluation of ANITA Air Monitoring on the International Space Station

2009-07-12
2009-01-2520
ANITA (Analysing Interferometer for Ambient Air) is a flight experiment precursor for a permanent continuous air quality monitoring system on the ISS (International Space Station). For the safety of the crew, ANITA can detect and quantify quasi-online and simultaneously 33 gas compounds in the air with ppm or sub-ppm detection limits. The autonomous measurement system is based on FTIR (Fourier Transform Infra-Red spectroscopy). The system represents a versatile air quality monitor, allowing for the first time the detection and monitoring of trace gas dynamics, with high time resolution, in a spacecraft atmosphere. ANITA operated on the ISS from September 2007 to August 2008. This paper summarises the results of ANITA's air analyses and compares results to other measurements acquired on ISS during the operational period.
Journal Article

Development of a Predictive Model for Gasoline Vehicle Particulate Matter Emissions

2010-10-25
2010-01-2115
The relationship between gasoline properties and vehicle particulate matter emissions was investigated, for the purpose of constructing a predictive model. Various chemical species were individually blended with an indolene base fuel, and the solid particulate number (PN) emissions from each blend were measured over the New European Driving Cycle (NEDC). The results indicated that aromatics with a high boiling point and a high double bond equivalent (DBE) value tended to produce more PN emissions. However, high boiling point components with low DBE values, such as paraffins, displayed only a minor effect on PN. Upon further analysis of the test results, it was also confirmed that low vapor pressure components correlated with high PN emissions, as might be expected based on their combustion behavior. A predictive model, termed the “PM Index,” was constructed based on the weight fraction, vapor pressure, and DBE value of each component in the fuel.
Journal Article

Ethanol Blend Effects On Direct Injection Spark-Ignition Gasoline Vehicle Particulate Matter Emissions

2010-10-25
2010-01-2129
Direct injection spark-ignition (DISI) gasoline engines can offer better fuel economy and higher performance over their port fuel-injected counterparts, and are now appearing increasingly in more U.S. vehicles. Small displacement, turbocharged DISI engines are likely to be used in lieu of large displacement engines, particularly in light-duty trucks and sport utility vehicles, to meet fuel economy standards for 2016. In addition to changes in gasoline engine technology, fuel composition may increase in ethanol content beyond the 10% allowed by current law due to the Renewable Fuels Standard passed as part of the 2007 Energy Independence and Security Act (EISA). In this study, we present the results of an emissions analysis of a U.S.-legal stoichiometric, turbocharged DISI vehicle, operating on ethanol blends, with an emphasis on detailed particulate matter (PM) characterization.
Journal Article

Carbonyl Formation during High Efficiency Clean Combustion of FACE Fuels

2010-10-25
2010-01-2212
The low temperature conditions that occur during high efficiency clean combustion (HECC) often lead to the formation of partially oxidized HC species such as aldehydes, ketones and carboxylic acids. Using the diesel fuels specified by the Fuels for Advanced Combustion Engines (FACE) working group, carbonyl species were collected from the exhaust of a light duty diesel engine operating under HECC conditions. High pressure liquid chromatography - mass spectrometry (LC-MS) was used to speciate carbonyls as large as C 9 . A relationship between carbonyl species formed in the exhaust and fuel composition and properties was determined. Data were collected at the optimum fuel efficiency point for a typical road load condition. Results of the carbonyl analysis showed changes in formaldehyde and acetaldehyde formation, formation of higher molecular weight carbonyls and the formation of aromatic carbonyls.
Journal Article

Lean Gasoline Engine Reductant Chemistry During Lean NOx Trap Regeneration

2010-10-25
2010-01-2267
Lean NOx Trap (LNT) catalysts can effectively reduce NOx from lean engine exhaust. Significant research for LNTs in diesel engine applications has been performed and has led to commercialization of the technology. For lean gasoline engine applications, advanced direct injection engines have led to a renewed interest in the potential for lean gasoline vehicles and, thereby, a renewed demand for lean NOx control. To understand the gasoline-based reductant chemistry during regeneration, a BMW lean gasoline vehicle has been studied on a chassis dynamometer. Exhaust samples were collected and analyzed for key reductant species such as H₂, CO, NH₃, and hydrocarbons during transient drive cycles. The relation of the reductant species to LNT performance will be discussed. Furthermore, the challenges of NOx storage in the lean gasoline application are reviewed.
Journal Article

Connected Vehicle Accelerates Green Driving

2010-10-19
2010-01-2315
After the turn of the century, growing social attention has been paid to environmental concerns, especially the reduction of greenhouse gas emissions and it comes down to a personal daily life concern which will affect the purchasing decision of vehicles in the future. Among all the sources of greenhouse gas emissions, the transportation industry is the primary target of reduction and almost every automotive company pours unprecedented amounts of money to reengineer the vehicle technologies for better fuel efficiency and reduced CO2 emission. Besides those efforts paid for sheer improvements of genuine vehicle technologies, NISSAN testified that “connectivity” with outside servers contributed a lot to reduce fuel consumption, thus the less emission of GHG, with two major factors; 1. detouring the traffic congestions with the support of probe-based real-time traffic information and 2. providing Eco-driving advices for the better driving behavior to prompt the better usage of energy.
Journal Article

Conversion of a Spark-Ignited Aircraft Engine to JP-8 Heavy Fuel for Use in Unmanned Aerial Vehicles

2011-04-12
2011-01-0145
In order to satisfy a single-fuel mandate, the U.S. Department of Defense has a need for engines in the 20 to 50 hp range to power midsized Unmanned Aerial Vehicles (UAVs) and the ability to operate on JP-8 also known as “heavy” fuel. It is possible to convert two-stroke aircraft engines designed to operate on a gasoline-oil mixture to run on JP-8/oil using the Sonex Combustion System (SCS) developed by Sonex Research, Inc. Conversion of the engine involves replacing the cylinder heads with new components designed to accept a steel combustion ring insert. Also required are glow-plugs to preheat the cylinder head prior to engine start. The converted engine produces the same power output as the stock engine operating on gasoline. Conversion of both a 20 hp and 40 hp engine was successfully achieved using the SCS.
Journal Article

Emission Measurements of the AI-14RA Aviation Engine in stationary test and under Real Operating Conditions of PZL-104 ‘Wilga’ Plane

2010-05-05
2010-01-1563
Due to a rapid development of air transportation there is a need for the assessment of real environmental risk related to the aircraft operation. The emission of carbon monoxide and particulate matter is still a serious threat~constituting an obstacle in the development of combustion engines. The applicable regulations related to the influence of the air transportation on the environment introduced by EPA (Environmental Protection Agency), ICAO (International Civil Aviation Organization) contained in JAR 34 (JAA, Joint Aviation Requirements, JAR 34, Aircraft Engine Emissions), FAR 34 (FAA, Federal Aviation Regulations, Part 34, Fuel Venting and Exhaust Emission Requirements for Turbine Engine Powered Airplanes), mostly pertain to the emission of noise and exhaust gas compounds, NOx in particular. They refer to jet engines and have stationary test procedures depending on the engine operating conditions.
Journal Article

Simulation of Underbody Contribution of Wind Noise in a Passenger Automobile

2013-05-13
2013-01-1932
Wind noise is a significant source of interior noise in automobiles at cruising conditions, potentially creating dissatisfaction with vehicle quality. While wind noise contributions at higher frequencies usually originate with transmission through greenhouse panels and sealing, the contribution coming from the underbody area often dominates the interior noise spectrum at lower frequencies. Continued pressure to reduce fuel consumption in new designs is causing more emphasis on aerodynamic performance, to reduce drag by careful management of underbody airflow at cruise. Simulation of this airflow by Computational Fluid Dynamics (CFD) tools allows early optimization of underbody shapes before expensive hardware prototypes are feasible. By combining unsteady CFD-predicted loads on the underbody panels with a structural acoustic model of the vehicle, underbody wind noise transmission could be considered in the early design phases.
Journal Article

Impacts of Non-Traditional Uses of Polyurethane Foam in Automotive Applications at End of Life

2014-05-05
2014-01-9099
Polyurethane (PU) foam is used for many automotive applications with the benefits of being lightweight, durable, and resistant to heat and noise. Applications of PU foams are increasing to include non-traditional purposes targeting consumer comfort. An example of this is the use of PU foam between the engine and engine cover of a vehicle for the purpose of noise abatement. This addition will provide a quieter ride for the consumer, however will have associated environmental impacts. The additional weight will cause an increase in fuel consumption and related emissions. More significant impacts may be realized at the end-of-life stage. Recycling PU foams presents several challenges; a lack of market for the recyclate, contamination of the foams, and lack of accessibility for removal of the material.
Journal Article

Experimental Prediction of Shock Response Spectra of Point-Wise Explosive Pyroshock in a Space Launcher Composite Structure Using Laser Pulse Excitation and In-line Filtering

2013-09-17
2013-01-2088
Numerous pyrotechnic devices have been employed in satellite launch vehicle missions, generally for the separation of structural subsystems such as stage and satellite separation. The detonation of the pyrotechnic devices generates shock waves characterized by high accelerations and vibrations which cause the failure of electronic components. To reduce the possibility of failure, many researchers have attempted to develop various experimental and numerical simulation methods for investigating pyroshock behavior to determine the appropriate placement of sensitive equipment. However, most of those methods have limitations such as low flexibility and high costs in the experimental methods and relatively low efficiency and reliability in the numerical methods. This study proposes a simple experimental method for pyroshock prediction using only laser pulse excitation and in-line filters for composite structure.
Journal Article

Potential of Several Alternative Propulsion Systems for Light Rotorcrafts Applications

2013-09-17
2013-01-2230
Reducing greenhouse gas emissions to limit global warming is becoming one of the key issues of the 21st century. As a growing contributor to this phenomenon, the aeronautic transport sector has recently taken drastic measures to limit its impact on CO2 and pollutants, like the aviation industry entry in the European carbon market or the ACARE objectives. However the defined targets require major improvements in existing propulsion systems, especially on the gas generator itself. Regarding small power engines for business aviation, rotorcrafts or APU, the turboshaft is today a dominant technology, despite quite high specific fuel consumption. In this context, solutions based on Diesel Internal Combustion Engines (ICE), well known for their low specific fuel consumption, could be a relevant alternative way to meet the requirements of future legislations for low and medium power applications (under 1000kW).
Journal Article

Investigation of Small Scale Pulsed Detonation Engines and Feasibility Study for Implementation with Disposable Unmanned Aerial Systems

2013-09-17
2013-01-2304
Significant efforts have been made in the research of Pulsed Detonation Engines (PDEs) to increase the reliability and longevity of detonation based propulsion systems for use in manned aircraft. However, the efficiency, durability, and low mechanical complexity of PDEs opens up potential for use in disposable unmanned-vehicles. This paper details the steps taken for producing a miniaturized pulse detonation engine at West Virginia University (WVU) to investigate the numerically generated constraining dimensions for Deflagration to Detonation Transition (DDT) cited in this paper. Initial dimensions for the WVU PDE Demonstrator were calculated using fuel specific DDT spatial properties featured in the work of Dr. Phillip Koshy Panicker, of The University of Texas at Arlington. The WVU demonstrator was powered using oxygen and acetylene mixed in stoichiometric proportions.
Journal Article

Orion Emergency Mask Approach

2009-07-12
2009-01-2460
Human rated space vehicles must provide safe breathing air to the crew, in the event of fire or other upset that affects air quality. In very short missions, like those in Mercury, the crew could remain in their flight suit. As mission duration increased, some sort of emergency breathing apparatus was used to provide safe breathing air in emergency situations. The Orion vehicle has a unique set of emergency breathing apparatus design challenges: the vehicle is small compared to shuttle and station, the vehicle does not have a pressurized supply of breathing air, the vehicle has a 30% oxygen design limit, no airlocks or alternate habitable volumes, and during lunar missions the crew members need to remain in the vehicle for many hours after an emergency. A filtering respirator shows special promise to address the needs of Orion, but a filtering respirator for combustion products has never been built and qualified for space.
Journal Article

Design Description and Initial Characterization Testing of an Active Heat Rejection Radiator with Digital Turn-Down Capability

2009-07-12
2009-01-2419
NASA's proposed lunar lander, Altair, will be exposed to vastly different external temperatures following launch till its final destination on the moon. In addition, the heat rejection is lowest at the lowest environmental temperatures (0.5 kW @ 4K) and highest at the highest environmental temperature (4.5 kW @ 215K). This places a severe demand on the radiator design to handle these extreme turn-down requirements. A radiator with digital turn-down capability is currently under study at JPL as a robust means to meet the heat rejection demands and provide freeze protection while minimizing mass and power consumption. Turndown is achieved by independent control of flow branches with isolating latch valves and a gear pump to evacuate the isolated branches. A bench-top test was conducted to characterize the digital radiator concept. Testing focused on the demonstration of proper valve sequencing to achieve turn-down and recharge of flow legs.
Journal Article

Aircraft Radial Engine CFD Cooling Model

2014-10-13
2014-01-2884
The article presents convective heat transfer phenomenon by analytically and empirically taken data and CFD based model analysis. 1000 hp ASz-62IR aircraft radial engine is the object of research. This engine is being continuously operated on M18 Dromader and AN-2 aircraft. To recount heat oriented phenomena a three-dimensional CFD model was developed that accounts circumfluent flow around cylinder and cylinder head engine surfaces. The geometry includes M18 Dromader frontal airframe elements to account their influence on cooling air flow. The simulation has been conducted as a steady-state flow. Geometry and setup specific swirls and backflows were observed that increase cylinder and cylinder head rear side heat transfer coefficients. Flow along cooling fins was analysed, connecting their heat transfer coefficient dependency. Results show that local air velocity has big influence on heat flux passed by fin walls.
X