Refine Your Search

Topic

Author

Affiliation

Search Results

Standard

Procedure for the Continuous Sampling and Measurement of Non-Volatile Particle Emissions from Aircraft Turbine Engines

2020-07-28
WIP
AIR6241B

This Aerospace Information Report (AIR) is a historical technical record describing procedures, required continuous sampling conditions, and instrumentation for the measurement of non-volatile particle number and mass concentrations from the exhaust of aircraft gas turbine engines. Procedures are included to calculate sampling loss performance. This AIR is not intended for in-flight testing, nor does it apply to engine operating in the afterburning mode.

This Aerospace Information Report is a historical technical record of the initial document detailing the measurement of non-volatile particle emissions at the exit plane of aircraft gas turbine engines. This methodology was adopted by ICAO into Annex 16 Vol II and updated into Aerospace Recommended Practice ARP6320.

Future updates of this document may include explanations of the reasoning and assumptions used to develop this measurement methodology.

Journal Article

Effect of Different B20 Fuels on Laboratory-Aged Engine Oil Properties

2010-10-25
2010-01-2102
Biodiesel-blended fuel is increasingly becoming available for diesel engines. Due to seasonal and economic factors, biodiesel available in filling stations can be sourced from varying feedstocks. Moreover, biodiesel may not contain the minimum oxidative stability required by the time it is used by the automotive consumer. With fuel dilution of engine oil accelerated by post-injection of fuel for regeneration of diesel particulate filters, it is necessary to investigate whether different biodiesel feedstocks or stabilities can affect engine oil properties. In this work, SAE 15W-40 CJ-4 is diluted with B20 fuel, where the B20 was prepared with soy methyl ester (SME) B100 with high Rancimat oxidative stability, SME B100 with low oxidative stability, and lard methyl ester (LME). The oils were then subjected to laboratory aging simulating severe drive cycles. At intermediate aging times, samples were obtained and additional B20 was added to simulate on-going fuel dilution.
Journal Article

Lean Gasoline Engine Reductant Chemistry During Lean NOx Trap Regeneration

2010-10-25
2010-01-2267
Lean NOx Trap (LNT) catalysts can effectively reduce NOx from lean engine exhaust. Significant research for LNTs in diesel engine applications has been performed and has led to commercialization of the technology. For lean gasoline engine applications, advanced direct injection engines have led to a renewed interest in the potential for lean gasoline vehicles and, thereby, a renewed demand for lean NOx control. To understand the gasoline-based reductant chemistry during regeneration, a BMW lean gasoline vehicle has been studied on a chassis dynamometer. Exhaust samples were collected and analyzed for key reductant species such as H₂, CO, NH₃, and hydrocarbons during transient drive cycles. The relation of the reductant species to LNT performance will be discussed. Furthermore, the challenges of NOx storage in the lean gasoline application are reviewed.
Journal Article

Connected Vehicle Accelerates Green Driving

2010-10-19
2010-01-2315
After the turn of the century, growing social attention has been paid to environmental concerns, especially the reduction of greenhouse gas emissions and it comes down to a personal daily life concern which will affect the purchasing decision of vehicles in the future. Among all the sources of greenhouse gas emissions, the transportation industry is the primary target of reduction and almost every automotive company pours unprecedented amounts of money to reengineer the vehicle technologies for better fuel efficiency and reduced CO2 emission. Besides those efforts paid for sheer improvements of genuine vehicle technologies, NISSAN testified that “connectivity” with outside servers contributed a lot to reduce fuel consumption, thus the less emission of GHG, with two major factors; 1. detouring the traffic congestions with the support of probe-based real-time traffic information and 2. providing Eco-driving advices for the better driving behavior to prompt the better usage of energy.
Journal Article

Simulation of Underbody Contribution of Wind Noise in a Passenger Automobile

2013-05-13
2013-01-1932
Wind noise is a significant source of interior noise in automobiles at cruising conditions, potentially creating dissatisfaction with vehicle quality. While wind noise contributions at higher frequencies usually originate with transmission through greenhouse panels and sealing, the contribution coming from the underbody area often dominates the interior noise spectrum at lower frequencies. Continued pressure to reduce fuel consumption in new designs is causing more emphasis on aerodynamic performance, to reduce drag by careful management of underbody airflow at cruise. Simulation of this airflow by Computational Fluid Dynamics (CFD) tools allows early optimization of underbody shapes before expensive hardware prototypes are feasible. By combining unsteady CFD-predicted loads on the underbody panels with a structural acoustic model of the vehicle, underbody wind noise transmission could be considered in the early design phases.
Journal Article

Impacts of Non-Traditional Uses of Polyurethane Foam in Automotive Applications at End of Life

2014-05-05
2014-01-9099
Polyurethane (PU) foam is used for many automotive applications with the benefits of being lightweight, durable, and resistant to heat and noise. Applications of PU foams are increasing to include non-traditional purposes targeting consumer comfort. An example of this is the use of PU foam between the engine and engine cover of a vehicle for the purpose of noise abatement. This addition will provide a quieter ride for the consumer, however will have associated environmental impacts. The additional weight will cause an increase in fuel consumption and related emissions. More significant impacts may be realized at the end-of-life stage. Recycling PU foams presents several challenges; a lack of market for the recyclate, contamination of the foams, and lack of accessibility for removal of the material.
Journal Article

Potential of Several Alternative Propulsion Systems for Light Rotorcrafts Applications

2013-09-17
2013-01-2230
Reducing greenhouse gas emissions to limit global warming is becoming one of the key issues of the 21st century. As a growing contributor to this phenomenon, the aeronautic transport sector has recently taken drastic measures to limit its impact on CO2 and pollutants, like the aviation industry entry in the European carbon market or the ACARE objectives. However the defined targets require major improvements in existing propulsion systems, especially on the gas generator itself. Regarding small power engines for business aviation, rotorcrafts or APU, the turboshaft is today a dominant technology, despite quite high specific fuel consumption. In this context, solutions based on Diesel Internal Combustion Engines (ICE), well known for their low specific fuel consumption, could be a relevant alternative way to meet the requirements of future legislations for low and medium power applications (under 1000kW).
Journal Article

Analytical Modelling of Diesel Powertrain Fuel System and Consumption Rate

2015-01-01
2014-01-9103
Vehicle analytical models are often favorable due to describing the physical phenomena associated with vehicle operation following from the principles of physics, with explainable mathematical trends and with extendable modeling to other types of vehicle. However, no experimentally validated analytical model has been developed as yet of diesel engine fuel consumption rate. The present paper demonstrates and validates for trucks and light commercial vehicles an analytical model of supercharged diesel engine fuel consumption rate. The study points out with 99.6% coefficient of determination that the average percentage of deviation of the steady speed-based simulated results from the corresponding field data is 3.7% for all Freeway cycles. The paper also shows with 98% coefficient of determination that the average percentage of deviation of the acceleration-based simulated results from the corresponding field data under negative acceleration is 0.12 %.
Technical Paper

Lean-Burn Stratified Alcohol Fuels Engines of Power Density up to 475 kW/Liter Featuring Super-Turbocharging, Rotary Valves, Direct Injection, and Jet Ignition

2020-09-15
2020-01-2036
Direct injection (DI) and jet ignition (JI), plus assisted turbocharging, have been demonstrated to deliver high efficiency, high power density positive ignition (PI) internal combustion engines (ICEs) with gasoline. Peak efficiency above 50% and power density of 340 kW/liter at the 15,000 rpm revolution limiter working overall λ=1.45 have been report-ed. Here we explore the further improvement in power density that may be obtained by replacing gasoline with ethanol or methanol, thanks to the higher octane number and the larger latent heat of vaporization, which translates in an increased resistance to knock, and permits to have larger compression ratios. Results of simulations are proposed for a numerical engine that uses rotary valves rather than poppet valves, while also using mechanical, rather than electric, assisted turbocharging. While with gasoline, the power density is 410-420 kW/liter, the use of oxygenates permits to achieve up to 475 kW/liter working with methanol.
Technical Paper

Parameterization of Particles Emitted from a Jet Engine during Stationary Tests

2020-09-15
2020-01-2202
Particles are one of the pollutants that affect air quality. The assessment of air pollution degree is conducted, among others, on the basis of parameters regarding the mass concentration of particles (PM2.5 and PM10). The growing awareness of the processes accompanying particles emissions is causing a growing interest in their other parameters such as number and diameter. Particles dimensions are important in determining their impact on human health. The most dangerous are particles of the smallest size; characteristic for internal combustion engines, mainly jet engines. The assessment of individual means of transport from the point of view of their ecological aspects is carried out in relation to fuel consumption, while in the case of particles; the analysis must be extended by their individual parameters. The article presents a comprehensive analysis of particles emissions from a jet engine during stationary tests.
Technical Paper

Aero Drag Improvement Study on Large Commercial Vehicles Using CFD Lead Approach

2021-09-22
2021-26-0424
Nowadays, E- commerce and logistics business model is booming in India with road transport as a major mode of delivery system using containers. As competition in such business are on rise, different ways of improving profit margins are being continuously evolved. One such scenario is to look at reducing transportation cost while reducing fuel consumption. Traditionally, aero dynamics of commercial vehicles have never been in focus during their product development although literature shows major part of total fuel energy is consumed in overcoming aerodynamic drag at and above 60 kmph in case of large commercial vehicle. Hence improving vehicle exterior aerodynamic performance gives opportunity to reduce fuel consumption and thereby business profitability. Also byproduct of this improvement is reduced emissions and meeting regulatory requirements.
Journal Article

Aspects of Damage Tolerance and Fatigue of CFRP Structural Components

2015-09-15
2015-01-2596
Lightweight structures are one key issue for all future mobility concepts. Carbon fibre reinforced plastics (CFRP) play an important role in these disciplines due to their outstanding mechanical performance regarding to their weight. Therefore, CRFP structures have been widely used since decades in aerospace industry resulting in improvements in payload, fuel consumption and range. The Airbus A350, Boeing B787 in civil airplane industry as well as military products like the NH90 transport helicopter are examples of this development towards “all composite”-aircrafts. A main difference of CFRP-structures towards metallic ones is the behaviour regarding damage tolerance and fatigue. For helicopter composite structures this issue is newly defined in §573 of the relevant certification specifications (CS and FAR).
Journal Article

Designing a Hybrid Electric Powertrain for an Unmanned Aircraft with a Commercial Optimization Software

2017-06-29
2017-01-9000
The design of a hybrid electric powertrain requires a complex optimization procedure because its performance will strongly depend on both the size of the components and the energy management strategy. The problem is particular critical in the aircraft field because of the strong constraints to be fulfilled (in particular in terms of weight and volume). The problem was addressed in the present investigation by linking an in-house simulation code for hybrid electric aircraft with a commercial many-objective optimization software. The design variables include the size of engine and electric motor, the specification of the battery (typology, nominal capacity, bus voltage), the cooling method of the motor and the battery management strategy. Several key performance indexes were suggested by the industrial partner. The four most important indexes were used as fitness functions: electric endurance, fuel consumption, take-off distance and powertrain volume.
Technical Paper

Optimization of the Aerodynamic Lift and Drag of LYNK&CO 03+ with Simulation and Wind Tunnel Test

2020-04-14
2020-01-0672
Based on the first sedan of the LYNK&CO brand from Geely, the high-performance configuration equipped with an additional aerodynamic package was developed. The aerodynamic package including front wheel deflectors, front lip, side skirts, rear spoiler, and rear diffuser, was required to be upgraded to generate enough aerodynamic downforce for better handling stability, without compromising the aerodynamic drag of the vehicle too much to keep a low fuel consumption. Starting from the baseline configuration of the aerodynamics package provided by the design studio, the components were optimized for aerodynamic drag and lift using the simulation approach with PowerFLOW in combination with a design space exploration method. As a result, the targets for the aerodynamic coefficients of the vehicle and in particular a good trade-off between lift and drag were achieved.
Standard

Design Criteria for White Incandescent Lighted Aerospace Instruments

2012-06-29
HISTORICAL
ARP798A
This SAE Aerospace Recommended Practice (ARP) covers the general requirements and test procedures recommended for use with white incandescent integrally lighted instruments. Its use should provide uniformity of illumination from instrument to instrument and legibility under daylight operation. An appendix is provided to familiarize the designer with some of the techniques used to obtain uniformity of color and illumination in various types of instruments.
X