Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Nonlinear Flutter Analysis of Curved Panel under Mechanical and Thermal Loads Using Semi-Analytical and Finite Volume Methods

2020-11-20
Abstract The vibration behavior of components exposed to aerodynamic loads must be taken into consideration when designing aerial vehicles. Numerical simulation plays a key role in developing more realistic analytical models for panel flutter analysis. The notable feature of the present research is the use of two methods for the aeroelastic analysis of two-dimensional curved panels with cylindrical bending. In the first approach, the finite volume method (FVM) is used for supersonic viscous flow and nonlinear structural model while full Navier-Stokes equations are discretized. In the second approach, the third-order nonlinear piston theory aerodynamics in addition to mechanical and thermal loads is assumed. Moreover, the semi-analytical weighted residual method for the nonlinear curved panel is utilized. These approaches are concurrently compared with each other for the first time. Furthermore, Hamilton’s principle is used and partial differential equations (PDEs) are derived.
Standard

Environmental Control Systems (ECS) for UA (Unmanned Aircraft)

2022-06-24
WIP
AIR7063
This document provides guidance for establishing ECS for UA by primarily referencing existing AC-9 documents that apply with some indication how they need to be adapted. The document primarily addresses cooling requirements for UA equipment. Limited information is provided for ECS requirements for future UA that may carry passengers. The document does not intend to provide detail design guidance for all types of UA. This document only provides guidance related to environmental control of onboard equipment, cargo and possible animals and passengers. It does not pertain to the related ground stations that may be controlling the UA.
Journal Article

International Space Station United States Operational Segment Crew Quarters On-orbit vs. Design Performance Comparison

2009-07-12
2009-01-2367
The International Space Station (ISS) United States Operational Segment (USOS) received the first two permanent ISS Crew Quarters (CQ) on Utility Logistics Flight Two (ULF2) in November 2008. As many as four CQs can be installed in the Node 2 element to increase the ISS crew member size to six. The CQs provide crew members with private space that has enhanced acoustic noise mitigation, integrated radiation-reduction material, communication equipment, redundant electrical systems, and redundant caution and warning systems. The rack-sized CQ system has multiple crew member restraints, adjustable lighting, controllable ventilation, and interfaces that allow each crew member to personalize his or her CQ workspace. The deployment and initial operational checkout during integration of the ISS CQ to Node 2 is described in this paper.
Journal Article

Experimental Techniques of Measuring Vibratory Force for Aircraft Wings

2009-11-10
2009-01-3283
The authors measured the vibratory forces acting on an airfoil model by performing a ground vibration test (GVT). The airfoil model was manufactured using rapid prototyping. In the experiments, the airfoil model's structural response was also recorded and described. This paper detailedly introduces the entire experiment process and the obtained experimental data agreed well to the actual values.
Journal Article

A Computational Approach to Evaluate the Automotive Windscreen Wiper Placement Options Early in the Design Process

2013-05-13
2013-01-1933
For most car manufacturers, wind noise from the greenhouse region has become the dominant high frequency noise contributor at highway speeds. Addressing this wind noise issue using experimental procedures involves high cost prototypes, expensive wind tunnel sessions, and potentially late design changes. To reduce the associated costs as well as development times, there is strong motivation for the use of a reliable numerical prediction capability early in the vehicle design process. Previously, a computational approach that couples an unsteady computational fluid dynamics solver (based on a Lattice Boltzmann method) to a Statistical Energy Analysis (SEA) solver had been validated for predicting the noise contribution from the side mirrors. This paper presents the use of this computational approach to predict the vehicle interior noise from the windshield wipers, so that different wiper placement options can be evaluated early in the design process before the surface is frozen.
Journal Article

Simulation of Underbody Contribution of Wind Noise in a Passenger Automobile

2013-05-13
2013-01-1932
Wind noise is a significant source of interior noise in automobiles at cruising conditions, potentially creating dissatisfaction with vehicle quality. While wind noise contributions at higher frequencies usually originate with transmission through greenhouse panels and sealing, the contribution coming from the underbody area often dominates the interior noise spectrum at lower frequencies. Continued pressure to reduce fuel consumption in new designs is causing more emphasis on aerodynamic performance, to reduce drag by careful management of underbody airflow at cruise. Simulation of this airflow by Computational Fluid Dynamics (CFD) tools allows early optimization of underbody shapes before expensive hardware prototypes are feasible. By combining unsteady CFD-predicted loads on the underbody panels with a structural acoustic model of the vehicle, underbody wind noise transmission could be considered in the early design phases.
Journal Article

TBL Modeling for Aircraft Interior Noise Prediction Using Statistical Energy Analysis

2013-05-13
2013-01-1931
The turbulent boundary layer (TBL) that forms on the outside of a commercial airplane in flight is a significant source of noise. During cruise, the TBL can be the dominant source of noise. Because it is a significant contributor to the interior noise, it is desirable to predict the noise due to the TBL. One modeling approach for the acoustic prediction is statistical energy analysis (SEA). This technique has been adopted by North American commercial airplane manufacturers. The flow over the airplane is so complex that a fully resolved pressure field required for noise predictions is not currently analytically or numerically tractable. The current practice is to idealize the flows as regional and use empirical models for the pressure distribution. Even at this level of idealization, modelers do not agree on appropriate models for the pressure distributions. A description of the wall pressure is insufficient to predict the structural response. A structural model is also required.
Journal Article

A Comparison between Regular and Vibration-Assisted Drilling in CFRP/Ti6Al4V Stack

2014-09-16
2014-01-2236
As aircraft programs currently ramp up, productivity of assembly processes needs to be improved while keeping quality, reliability and manufacturing cost requirements. Efficiency of the drilling process still remains an issue particularly in the case of CFRP/metal stacks: hot and long metallic chips are difficult to remove and often damage the surface of CFRP holes. Low frequency axial vibration drilling has been proposed to solve this issue. This innovative drilling process allows breaking up the metallic chips in such a way that jamming is avoided. This paper presents a case of CFRP/Ti6Al4V drilling on a CNC machine where productivity must be increased. A comparison is made between the current regular process and the MITIS drilling process. First the analysis and comparison method is presented. The current process is analyzed and its limits are highlighted. Then the vibration process is implemented and its performances are studied.
Journal Article

Impacts of Non-Traditional Uses of Polyurethane Foam in Automotive Applications at End of Life

2014-05-05
2014-01-9099
Polyurethane (PU) foam is used for many automotive applications with the benefits of being lightweight, durable, and resistant to heat and noise. Applications of PU foams are increasing to include non-traditional purposes targeting consumer comfort. An example of this is the use of PU foam between the engine and engine cover of a vehicle for the purpose of noise abatement. This addition will provide a quieter ride for the consumer, however will have associated environmental impacts. The additional weight will cause an increase in fuel consumption and related emissions. More significant impacts may be realized at the end-of-life stage. Recycling PU foams presents several challenges; a lack of market for the recyclate, contamination of the foams, and lack of accessibility for removal of the material.
Journal Article

Evaluation of Ground Vehicle Wind Noise Transmission through Glasses Using Statistical Energy Analysis

2013-05-13
2013-01-1930
The contribution of wind noise through the glasses into the vehicle cabin is a large source of customer concern. The wind noise sources generated by turbulent flow incident on the vehicle surfaces and the transmission mechanisms by which the noise is transmitted to the interior of the vehicle are complex and difficult to predict using conventional analysis techniques including Computational Fluid Dynamics (CFD) and acoustic analyses are complicated by the large differences between turbulent pressures and acoustic pressures. Testing in dedicated acoustic wind tunnel (AWT) facilities is often performed to evaluate the contribution of wind noise to the vehicle interior noise in the absence of any other noise sources. However, this testing is time-consuming and expensive and test hardware for the vehicle being developed is often not yet available at early stages of vehicle design.
Journal Article

New Vibration System for Advanced Drilling Composite-Metallic Stacks

2013-09-17
2013-01-2078
To reduce the weight of aero structures, composite materials are combined with metallic parts. These multilayer materials are one-shot drilled during the assembly process. During drilling, interactions appear between the different layers creating new quality issues. To improve machining efficiency, the portable semi-automated drilling units commonly used for such operations need to be upgraded. For this purpose, vibration systems have been recently introduced into drilling units. This article first considers the effect of the reciprocating axial movement on the quality of the machined surface, then focuses on the effect of the oscillation parameters (frequency, magnitude) on the cutting process (cutting forces, thermal load, etc.). Experimental and numerical results are used to find the method that produces the optimal vibration setting. This method is then applied to the case of drilling composite-metallic stack.
Technical Paper

Medium and High-Frequency Vibration Analysis of Thin Plates by a Hybrid Distributed Transfer Function Method

2021-08-31
2021-01-1052
Vibrations of plates are widely seen in various applications of automobile, aerospace, mechanical and civil engineering. Vibration analysis of plates in medium and high-frequency regions plays an important role in optimal design and safe operation of machines and structures in these applications. Medium and high-frequency vibration analysis of plates is usually performed by using numerical methods. Proposed in this paper is a new analytical solution method for mid- and high-frequency analysis of thin rectangular plates modeled by the Kirchhoff-Love plate theory. In the development, analytical solutions for a class of thin plates are obtained based on a hybrid formulation that combines the Distributed Transfer Function Method (DTFM) and modal expansion. The proposed method, which is an extension of the DTFM for one-dimensional continua, is called the hybrid Distributed Transfer Function Method (hybrid DTFM).
Technical Paper

Direction Specific Analysis of Psychoacoustics Parameters inside Car Cockpit: A Novel Tool for NVH and Sound Quality

2020-09-30
2020-01-1547
Psychoacoustics parameters are widely employed in automotive field for objective evaluation of Sound Quality (SQ) of vehicle cabins and their components. The standard approach relies on binaural recordings from which numerical values and curves are calculated. In addition, head-locked binaural listening playback can be performed. The Virtual Reality (VR) technology recently started to diffuse also in automotive field, bringing new possibilities for enhanced and immersive listening sessions, thanks to the usage of massive microphone arrays instead of binaural microphones. In this paper, we combine both solutions: the principal SQ parameters are derived from multichannel recordings. This allows computing a map of direction-dependent values of SQ parameters. The acquisition system consists in a spherical microphone array with 32 capsules and a multiple-lens camera for capturing a panoramic equirectangular background image.
Technical Paper

Equivalent Damping Added by Sound Package

2020-04-14
2020-01-1397
In Automotive and Aerospace industries, sound package has an important role to control vehicle noise in order to improve passenger comfort and reduce environmental noise pollution. The most known approaches used to model the sound package are the Transfer Matrix Method (TMM) combined with Statistical Energy Analysis (SEA). The Transfer Matrix Method based approach is extensively used and well-validated for predicting the transmission loss and other vibro-acoustic indicators of multi-layer structures. However, to the best of our knowledge, the equivalent damping due to the multilayer has not been addressed yet in the literature, and it's a novel approach. In this paper, simplified formulations using TMM to compute the equivalent damping will be recalled, and an experimental study will be conducted to assess the add-on damping by sound package for different configurations.
Journal Article

Coupling CFD with Vibroacoustic FE Models for Vehicle Interior Low-Frequency Wind Noise Prediction

2015-06-15
2015-01-2330
With the reduction of engine and road noise, wind has become an important source of interior noise when cruising at highway speed. The challenges of weight reduction, performance improvement and reduced development time call for stronger support of the development process by numerical methods. Computational Fluid Dynamics (CFD) and finite element (FE) vibroacoustic computations have reached a level of maturity that makes it possible and meaningful to combine these methods for wind noise prediction. This paper presents a method used for coupling time domain CFD computations with a finite element vibroacoustic model of a vehicle for the prediction of low-frequency wind noise below 500 Hz. The procedure is based on time segmentation of the excitation load and transformation into the frequency domain for the vibroacoustic computations. It requires simple signal processing and preserves the random character as well as the spatial correlation of the excitation signal.
X