Refine Your Search

Search Results

Viewing 1 to 17 of 17
Video

The New Audi A6/A7 Family - Aerodynamic Development of Different Body Types on One Platform

2011-11-17
The presentation describes the aerodynamic development and optimization process of the three different new models of the Audi A6/A7 family. The body types of these three models represent the three classic aerodynamic body types squareback, notchback and fastback. A short introduction of the flow structures of these different body types is given and their effect on the vehicle aerodynamic is described. In order to achieve good aerodynamic performance, the integration into the development process of the knowledge about these flow phenomena and the breakdown of the aerodynamic resistance into its components friction- and pressure drag as well as the induced drag is very important. The presentation illustrates how this is realized within the aerodynamic development process at Audi. It describes how the results of CFD simulations are combined with wind tunnel measurements and how the information about the different flow phenomena were used to achieve an aerodynamic improvement.
Journal Article

Experimental and Numerical Study of Heat Transfer at the Underbody of a Production Car

2014-04-01
2014-01-0582
The optimization of the flow field around new vehicle concepts is driven by aerodynamic and thermal demands. Even though aerodynamics and thermodynamics interact, the corresponding design processes are still decoupled. Objective of this study is to include a thermal model into the aerodynamic design process. Thus, thermal concepts can be evaluated at a considerably earlier design stage of new vehicles, resulting in earlier market entry. In a first step, an incompressible CFD code is extended with a passive scalar transport equation for temperature. The next step also accounts for buoyancy effects. The simulated development of the thermal boundary layer is validated on a hot flat plate without pressure gradient. Subsequently, the solvers are validated for a heated block with ground clearance: The flow pattern in the wake and integral heat transfer coefficients are compared to wind tunnel simulations. The main section of this report covers the validation on a full-scale production car.
Technical Paper

Experimental and Numerical Investigations on Isolated, Treaded and Rotating Car Wheels

2020-04-14
2020-01-0686
Wheels on passenger vehicles cause about 25% of the aerodynamic drag. The interference of rims and tires in combination with the rotation result in strongly turbulent wake regions with complex flow phenomena. These wake structures interact with the flow around the vehicle. To understand the wake structures of wheels and their impact on the aerodynamic drag of the vehicle, the complexity was reduced by investigating a standalone tire in the wind tunnel. The wake region behind the wheel is investigated via Particle Image Velocimetry (PIV). The average flow field behind the investigated wheels is captured with this method and offers insight into the flow field. The investigation of the wake region allows for the connection of changes in the flow field to the change of tires and rims. Due to increased calculation performance, sophisticated computational fluid dynamics (CFD) simulations can capture detailed geometries like the tire tread and the movement of the rim.
Journal Article

The New Audi A6/A7 Family - Aerodynamic Development of Different Body Types on One Platform

2011-04-12
2011-01-0175
The paper describes the aerodynamic development and optimization process of the three different new models of the Audi A6/A7 family. The body types of these three models represent the three classic aerodynamic body types squareback, notchback and fastback. A short introduction of the flow structures of these different body types is given and their effect on the vehicle aerodynamic is described. In order to achieve good aerodynamic performance, the integration into the development process of the knowledge about these flow phenomena and the breakdown of the aerodynamic resistance into its components friction- and pressure drag as well as the induced drag is very important. The paper illustrates how this is realized within the aerodynamic development process at Audi. It describes how the results of CFD simulations are combined with wind tunnel measurements and how the information about the different flow phenomena were used to achieve an aerodynamic improvement.
Technical Paper

Dual Line Exhaust Design Optimisation to Maximize SCR Catalyst Efficiency thru Improved Ammonia Distribution

2009-04-20
2009-01-0914
The SCR after treatment system is already in production for passenger car engines with a single exhaust system. In this case, the exhaust system has to be designed very carefully to optimize the Ammonia distribution on the catalyst and therefore the DeNOx potential. The application to V8 engines with two turbochargers delivering the gas into two separated DOC & DPF units is an additional challenge. This paper describes the different optimization steps of such an exhaust system and the tools used during this work. After a design phase to integrate the SCR system in the exhaust geometry, a first CFD study was conducted to evaluate the performance of the basic system using one or two urea injectors. An optimization of the connection of the two tubes, directly in front of the SCR catalyst, has been designed using further CFD calculations as well as a marker gas SF6 on a cold flow bench.
Technical Paper

Comparison of Numerical Simulations with Experiments of Bluff Bodies Including Under-Hood Flow

2011-04-12
2011-01-0171
Computational Fluid Dynamics (CFD) is state of the art in the aerodynamic development process of vehicles nowadays. With increasing computer power the numerical simulations including meshing and turbulence modeling are capturing the complex geometry of vehicles and the flow field behavior around and behind a bluff body in more detail. The ultimate goal for realistic automotive simulations is to model the under-hood as well. In this study vehicle simulations using the finite volume open source CFD program OpenFOAM® are validated with own experiments on a modified generic quarter-scale SAE body with under-hood flow. A model radiator was included to take account of the pressure drop in the under-hood compartment. Force and pressure measurements around the car, total-pressure and hot-wire measurements in the car flow field and surface flow patterns were simulated and compared with the experiment.
Technical Paper

The Ground Simulation Upgrade of the Large Wind Tunnel at the Technische Universität München

2012-04-16
2012-01-0299
The large wind tunnel at the Technische Universität München was upgraded by integrating a modular single-belt system, which enables the simulation of moving ground conditions for ground vehicle testing. Central part of this system is its large belt that moves at a maximum speed of 50 m/s. This belt not only simulates the relative motion between the model vehicle under investigation and the floor, but also drives the model's wheels. Due to its size, the wind tunnel facility is suited for testing 40%-scaled models of typical passenger cars, which are held in place by a newly designed model support system consisting of five struts: One strut to support the body of the model and four struts to hold the model's wheels on top of the moving belt. Another crucial step in upgrading the wind tunnel was to install a boundary layer scoop system to reduce the thickness of the boundary layer approaching the moving belt.
Technical Paper

Rotating Wheels - Their Impact on Wind Tunnel Test Techniques and on Vehicle Drag Results

1997-02-24
970133
The question of the proper simulation of wheel rotation has not so far been a major concern. Within the scope of an examination of the influence of wheels and tyres on aerodynamic drag it will be shown that their contribution to the overall drag value - whether they are rotating or not - is of about the same magnitude as the proportion of the rough underbody. Therefore the question of the importance of the simulation of wheel rotation is posed. This paper discusses how a measurement with a better simulation can look like and what the major changes in the flow field are. In particular a new physical quantity, which has to be determined, the so-called “fan moment” is introduced. . The problems that arise in the determination of the fan moment of the wheels and hence in the required isolation of the rolling resistance, are described in detail. This is done for a test set up with full width moving belt and measurement via internal balance and sting support.
Technical Paper

Investigations on the Deposition Behaviour of Brake Wear Particles on the Wheel Surface

2021-10-11
2021-01-1301
The deposition behavior of brake wear particles on the surface of a wheel and the mechanisms on it have not been fully understood. In addition, the proportion of brake wear particles deposited on the wheel surface compared to the total emitted particles is almost unknown. This information is necessary to evaluate the number- and mass-related emission factors measured on the inertia dynamometer and to compare them with on-road and vehicle-related emission behaviour. The aim of this study is to clarify the deposition behavior of brake particles on the wheel surface. First, the real deposition behaviour is determined in on-road tests. For particle sampling, collection pads are adapted at different positions of a front and rear axle wheel. In addition to a Real Driving Emissions (RDE)-compliant test cycle, tests are performed in urban, rural and motorway sections to evaluate speed-dependent influences.
Technical Paper

Wind Tunnel Pulsations and their Active Suppression

2000-03-06
2000-01-0869
Low-frequency pressure fluctuations which occur at certain flow speeds are an undesired feature in many open jet wind tunnels. This so called ‘wind tunnel pumping’ affects the aerodynamic quality of the flow and thus the quality of the measured data. In this paper a novel approach is presented to control the pulsation phenomenon by active damping of the acoustic resonant modes of the wind tunnel circuit. The acoustic mechanism of the resonance effect was investigated using a 1/20 scale pilot wind tunnel with a complete and detailed representation of test section, ducting, turning vanes and fan. The newly devised Active Resonance Control (ARC) System essentially consists of a microphone which picks up the pressure fluctuations in the plenum, a loudspeaker which is mounted in the tunnel wall and a time delay to adjust the phase relation between the microphone signal and the loudspeaker output.
Technical Paper

Assessing the Sensitivity of Hybrid RANS-LES Simulations to Mesh Resolution, Numerical Schemes and Turbulence Modelling within an Industrial CFD Process

2018-04-03
2018-01-0709
A wide-ranging investigation into the sensitivity of the hybrid RANS-LES based OpenFOAM CFD process at Audi was undertaken. For a range of cars (A1, TT, Q3 & A4) the influence of the computational grid resolution, turbulence model formulation and spatial & temporal discretization is assessed. It is shown that SnappyHexMesh, the Cartesian-prismatic built-in OpenFOAM mesher is unable to generate low y+ grids of sufficient quality for the production Audi car geometries. For high y+ grids there was not a consistent trend of additional refinement leading to improved correlation between CFD and experimental data. Similar conclusions were found for the turbulence models and numerical schemes, where consistent improvements over the baseline setup for all aerodynamic force coefficients were in general not possible. The A1 vehicle exhibited the greatest sensitivity to methodology changes, with the TT showing the least sensitivity.
Technical Paper

Modeling of HVAC Noise in a Simplified Car Model

2018-06-13
2018-01-1522
To assure high comfort for vehicle passengers, the interior noise has to be designed to be low in volume as well as in a pleasant way. Vehicle’s HVAC (heating, ventilation and air-conditioning) noise becomes increasingly audible when the main sound sources are acoustically optimized. Thus, the Sound Quality of HVAC noise needs to be evaluated early in the development process. For assessing the Sound Quality of HVAC noise, suitable evaluation criteria as well as the knowledge of the acoustics of the new HVAC system are required. Suitable evaluation criteria were identified using listening tests. In a second step HVAC noise was investigated in different environments: HVAC as a component, HVAC as a system (including air ducts and vents) and HVAC system integrated in a simplified car model. The model was designed acoustically similar to a series vehicle. Thus, the size as well as the interior paneling of a series vehicle was approximated by using sound-absorbing and -reflecting material.
Technical Paper

A Theoretical Approach towards the Self-Correcting Open Jet Wind Tunnel

2014-04-01
2014-01-0579
Open jet wind tunnels are normally tuned to measure “correct” results without any modifications to the raw data. This is an important difference to closed wall wind tunnels, which usually require wind tunnel corrections. The tuning of open jet facilities is typically done experimentally using pilot tunnels and adding final adjustments in the commissioning phase of the full scale tunnel. This approach lacked theoretical background in the past. There is still a common belief outside the small group of people designing and using open jet wind tunnels, that - similar to closed wind tunnels, which generally measure too high aerodynamic forces and moments without correction - open jet wind tunnels measure coefficient too low compared to the real world. The paper will try to show that there is a solid physical foundation underlying the experimental approach and that the expectation to receive self-correcting behavior can be supported by theoretical models.
Journal Article

Critical Assessment of Some Popular Scale-Resolving Turbulence Models for Vehicle Aerodynamics

2017-03-28
2017-01-1532
Some widely-used scale-resolving turbulence models are comparatively assessed in simulating the aerodynamic behavior of a full-scale AUDI-A1 car configuration. The presently considered hybrid RANS/LES (RANS – Reynolds-Averaged Navier-Stokes; LES – Large-Eddy Simulation) models include the well-known DDES (Delayed Detached-Eddy Simulation) scheme and two further variable-resolution formulations denoted by PANS (Partially-Averaged Navier-Stokes; Basara, 2011) and VLES (Very LES; Chang et al., 2014). Whereas the DDES method represents the originally proposed formulation based on the one-equation Spalart-Almaras model (Spalart et al. 2006), whose RANS/LES interface position is directly correlated to the underlying grid resolution, the other two models represent ‘true’ seamless formulations, providing a smooth transition from Unsteady RANS to LES in terms of a dynamic “resolution parameter” variation.
Journal Article

The Aerodynamic Development of the New Audi Q5

2017-03-28
2017-01-1522
The aerodynamic development of the new Audi Q5 (released in 2017) is described. In the course of the optimization process a number of different tools has been applied depending on the chronological progress in the project. During the early design phase, wind tunnel experiments at 1:4 scale were performed accompanied by transient DES and stationary adjoint simulations. At this stage the model contained a detailed underbody but no detailed engine bay for underhood flow. Later, a full scale Q5 model was built up for the aerodynamic optimization in the 1:1 wind tunnel at Audi AG. The model featured a detailed underbody and engine bay including original parts for radiators, engine, axles and brakes from similar vehicles. Also the 1:1 experiments were accompanied by transient DES and stationary adjoint simulations in order to predict optimization potential and to better understand the governing flow.
Technical Paper

Application of the Adjoint Method for Vehicle Aerodynamic Optimization

2016-04-05
2016-01-1615
The aerodynamic optimization of an AUDI Q5 vehicle is presented using the continuous adjoint approach within the OpenFOAM framework. All calculations are performed on an unstructured automatically generated mesh. The primal flow, which serves as input for the adjoint method, is calculated using the standard CFD process at AUDI. It is based on DES calculations using a Spalart-Allmaras turbulence model. The transient results of the primal solution are time averaged and fed to a stationary adjoint solver using a frozen turbulence assumption. From the adjoint model, drag sensitivity maps are computed and measures for drag reduction are derived. The predicted measures are compared to CFD simulations and to wind tunnel experiments at 1:4 model scale. In this context, general challenges, such as convergence and accuracy of the adjoint method are discussed and best practice guidelines are demonstrated.
Book

Aerodynamics of Road Vehicles, Fifth Edition

2015-12-30
The detailed presentation of fundamental aerodynamics principles that influence and improve vehicle design have made Aerodynamics of Road Vehicles the engineer’s “source” for information. This fifth edition features updated and expanded information beyond that which was presented in previous releases. Completely new content covers lateral stability, safety and comfort, wind noise, high performance vehicles, helmets, engine cooling, and computational fluid dynamics.
X