Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Improved thorax behavior of the EUROSID and effects on thorax injury assessment, on the basis of pendulum impacts

2001-06-04
2001-06-0141
In 1989, the EUROSID-1 was accepted in the European regulation ECE-R95. After a steady period of use, an upgraded version of this dummy: ES-2 is now considered as a step towards harmonization of side impact occupant regulations. The upgrades to the dummy include, amongst others, a modification of its torso back plate and a change in rib module guidance (piston-cylinder), especially to overcome anomalous rib deflection responses referred to as ""flat-top.'' Presented here are results of lateral and oblique pendulum tests, conducted on the EUROSID-1 and ES-2 to verify the modified torso back plate and to study the responses of three proposed rib module designs for ES-2. Particularly, rib deflections, rib VC responses, and thorax force-deflection responses are analyzed. The current study primarily addresses sensitivity of the ES-2 thorax to oblique loading.
Technical Paper

Biofidelity Improvements to the Hybrid III Headform

1984-10-01
841659
This paper describes the efforts of one group to improve the biomechanical fidelity of ATD headforms used in automotive crash testing. On the basis of recent cadaver head impact studies and on the literature dealing with facial bone tolerances, several refinements have been made to the Hybrid III head-form. These include a slight modification of effective skull stiffness, the addition of a frangible faceform sub-assembly and the introduction of a compliant mandible. The purpose of these modifications is to improve both the response characteristics to impact as well as to provide a direct means to monitor for facial bone injury.
Technical Paper

An Integrated Helmet and Neck Support (iHANS) for Racing Car Drivers: A Biomechanical Feasibility Study

2012-10-29
2012-22-0013
A new form of head and neck protection for racing car drivers is examined. The concept is one whereby the helmet portion of the system is attached, by way of a quick release clamp, to a collar-like platform which is supported on the driver's shoulders. The collar, which encircles the back and sides of the driver's neck, is held in place by way of the on-board restraint belts. The interior of the helmet portion of the assembly is large enough to provide adequate volitional head motion. The overall objective of the design is to remove the helmet from the wearer's head and thereby to mitigate the deleterious features of helmet wearing such as neck fatigue, poor ventilation and aerodynamic buffeting. Just as importantly, by transferring the weight of the helmet and all attendant reaction forces associated with inertial and impact loads to the shoulder complex (instead of to the neck), reduced head and neck injury probability should be achievable.
X