Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

A Measures Planning Method by Analysis of Contribution of the Vibration Transfer Path

2009-05-19
2009-01-2197
This paper describes a proposal of techniques on Transfer Path Analysis (TPA) to analyze transmission of vibration among the components in a complex structure. This proposal is evolved from the previous one [1] in the dimension which dominates the quality of the analysis in automotive body structure by TPA. The proper coordinate transformation was introduced to resolve the troublesome process on the application of the body structure in the previous proposal. The complications are caused by the treatment with a lot of transfer functions and transmitted forces at the conjunctions that are complexly assembled with many adjacent nodes. Dimension of the analytical region is expanded from two to three in this study. That is, from the cross section of interface of components to the structure itself where the vibration transmits between two components.
Technical Paper

Prediction of Spindle Force Using Measured Road Forces on Rolling Tire

2009-05-19
2009-01-2107
Improvement of vehicle interior noise is desired in recent years in the modern world of the demand of low weight, good fuel economy and offering technical advantages strongly. The dynamic force transmission of rolling tires from the road surface to the spindles is a critical factor in vehicle interior noise. We focus on structure-borne noise transferred through the spindle. It is necessary for effort of the effective tire/road noise reduction to predict spindle force excited by tire/road contact. The major issues in predicting spindle forces are to clarify the distribution of road forces and how to input on the simulation model. Therefore, it is important that road forces are measured accurately on the rolling tire. First, the dynamic road forces on the rolling tire are measured by using the tri-axial force sensor directly. In efforts to reduce interior noise due to structure-borne noise, it is necessary to predict spindle forces excited by the tire/road contact.
Technical Paper

Study on Noise Generation Mechanism for Dry Hybrid Type CVT - Influence of Block Motions and Surface Roughness of Pulley on Sound Pressure

2004-03-08
2004-01-0477
In order to reveal the mechanism of noise generation from CVT (Continuously Variable Transmissions) using a dry hybrid V-belt, the power spectrum of sound from a two-pulley CVT system and its variation with respect to rotational speed were measured. The experimental results showed that the frequency of the first peak in the power spectrum of the observed sound linearly increased with increasing the rotational speed of the pulley. The sound frequency of the first peak coincides with the frequency derived from the belt block pitch and the belt speed. Then, sound intensity analyses were conducted to identify noise sources of CVT. The experimental results reveal that unpleasant sound whose frequency is high occurs due to the collision or slip between CVT blocks and the pulley groove at the entrance and the exit of V-groove pulleys. Pulley surface roughness strongly affects the noise level. Additionally, the location of noise source varies due to surface roughness of the pulley groove.
Technical Paper

Permanent Deflection of Two-Layered Clutch Plates - - How to Reduce the Deflection of Two-Layered Clutch Plates -

2004-03-08
2004-01-0740
Two-layered clutch plates manufactured by a new process using BMC show a significant deflection. Two methods solving such deflection were alternatively developed in this study. Changing the composition of the clutch plate appeared to be useless while after-curing on deflected clutch plates was effective. Thermal cycles or high pressure for after-cure did not reduce the deflection. However, applying after-cure with a sloped mold reduce the deflection without increasing the disk density.
Technical Paper

Power Transmitting Mechanisms of CVT Using a Metal V-Belt and Load Distribution in the Steel Ring

1998-02-23
980824
An advanced numerical model is proposed to analyze the power transmitting mechanisms of a CVT using a metal V-belt. By using the present model, forces acting on the belt are well estimated not only at steady states but also during transitional states where the speed ratio is changing. The numerical results show that blocks are in compression in both strands when the speed ratio is rapidly shifted. A complementary model is also developed to analyze the load distribution among bands which form the ring. The load distribution in the ring is governed by the difference in coefficients of friction among elements.
Technical Paper

Power Transmitting Mechanism of a Dry Hybrid V-Belt for a CVT - Advanced Numerical Model Considering Block Tilting and Pulley Deformation -

1999-03-01
1999-01-0751
A new discrete model was developed in order to analyze the power transmitting mechanisms of a dry hybrid V-belt CVT not only at steady states but also at transitional states where the speed ratio was changing. Block tilting in the pulley was considered in the advanced numerical model as well as pulley deformation due to pulley thrust. The validity of the present model was well confirmed by comparing the calculated results on transmitting and normal forces with the former experimental results. The calculated results showed that both block tilting and pulley deformation meaningfully affected the pulley thrust ratio between the driving and the driven pulleys.
Technical Paper

Change of Relative Local Velocity in Pulley Groove at Sliding between Belt and Pulleys for Metal Pushing V-Belt Type CVT

2023-10-24
2023-01-1851
The objective of this study was to investigate the change of relative local velocity in each pulley groove at sliding between the belt and pulleys for a metal-pushing V-belt type CVT where micro elastic slips were inevitably accompanied to transmit power, while the transmissions were widely adopted to provide comfortable driving by continuously automatically adjusting the speed ratio. Local changes of wrapping radial position and velocity of the belt in each pulley groove of the CVT were simultaneously measured by a potentiometer with a spinning roller in the experiments. The mechanical power generated by the AC motor was transmitted through the CVT unit from the driving axis to the driven axis as usual under practical conditions while the speed ratio was set to 1.0. Pulley clamping force was applied by oil pressure.
X