Refine Your Search

Topic

Author

Search Results

Technical Paper

Impact of CO2 Dilution on Ignition Delay Times of Full Blend Gasolines in a Rapid Compression Machine

2021-09-21
2021-01-1199
Autoignition delay times of two full blend gasoline fuels (high and low RON) were explored in a rapid compression machine. CO2 dilution by mass was introduced at 0%, 15%, and 30% levels with the O2:N2 mole ratio fixed at 1:3.76. This dilution strategy is used to represent exhaust gas recirculation (EGR) substitution in spark ignition (SI) engines by using CO2 as a surrogate for major EGR constituents(N2, CO2, H2O). Experiments were conducted over the temperature range of 650K-900K and at 10 bar and 20 bar compressed pressure conditions for equivalence ratios of (Φ =) 0.6-1.3. The full blend fuels were admitted directly into the combustion chamber for mixture preparation using the direct test chamber (DTC) approach. CO2 addition retarded the autoignition times for the fuels studied here. The retarding effect of the CO2 dilution was more pronounced in the NTC region when compared to the lower and higher temperature range.
Journal Article

Impact of SCR Integration on N2O Emissions in Diesel Application

2015-04-14
2015-01-1034
Significant reduction in Nitrogen Oxide (NOx) emissions will be required to meet LEV III/Tier III Emissions Standards for Light Duty Diesel (LDD) passenger vehicles. As such, Original Equipment Manufacturers (OEMs) are exploring all possible aftertreatment options to find the best balance between performance, durability and cost. The primary technology adopted by OEMs in North America to achieve low NOx levels is Selective Catalytic Reduction (SCR). The critical parameters needed for SCR to work properly are: an appropriate reductant such as ammonia (NH3) provided as Diesel Exhaust Fluid (DEF), which is an aqueous urea solution 32.5% concentration in weight with water (CO(NH2)2 + H2O), optimum operating temperatures, and optimum nitrogen dioxide (NO2) to NOx ratios (NO2/NOx). The NO2/NOx ratio is most influenced by Precious Group Metals (PGM) containing catalysts upstream of the SCR catalyst.
Journal Article

Review and Assessment of Frequency-Based Fatigue Damage Models

2016-04-05
2016-01-0369
Several popular frequency-based fatigue damage models (Wirsching and Light, Ortiz and Chen, Larsen and Lutes, Benascuitti and Tovo, Benascuitti and Tovo with α.75, Dirlik, Zhao and Baker, and Lalanne) are reviewed and assessed. Seventy power spectrum densities with varied amplitude, shape, and irregularity factors from Dirlik’s dissertation are used to study the accuracies of these methods. Recommendations on how to set up the inverse fast Fourier transform to synthesize load data and obtain accurate rainflow cycle counts are given. Since Dirlik’s method is the most commonly used one in industry, a comprehensive investigation of parameter setups for Dirlik’s method is presented. The mean error and standard deviation of the error between the frequency-based model and the rainflow cycle counting method was computed for fatigue slope exponent m ranging from 3 to 12.
Journal Article

A Nonlinear Model Predictive Control Strategy with a Disturbance Observer for Spark Ignition Engines with External EGR

2017-03-28
2017-01-0608
This research proposes a control system for Spark Ignition (SI) engines with external Exhaust Gas Recirculation (EGR) based on model predictive control and a disturbance observer. The proposed Economic Nonlinear Model Predictive Controller (E-NMPC) tries to minimize fuel consumption for a number of engine cycles into the future given an Indicated Mean Effective Pressure (IMEP) tracking reference and abnormal combustion constraints like knock and combustion variability. A nonlinear optimization problem is formulated and solved in real time using Sequential Quadratic Programming (SQP) to obtain the desired control actuator set-points. An Extended Kalman Filter (EKF) based observer is applied to estimate engine states, combining both air path and cylinder dynamics. The EKF engine state(s) observer is augmented with disturbance estimation to account for modeling errors and/or sensor/actuator offset.
Technical Paper

Sensitivity Analysis of Aerodynamic Drag Coefficient to EPA Coastdown Ambient Condition Variation

2020-04-14
2020-01-0666
The test cycle average drag coefficient is examined for the variation of allowable EPA coastdown ambient conditions. Coastdown tests are ideally performed with zero wind and at SAE standard conditions. However, often there is some variability in actual ambient weather conditions during testing, and the range of acceptable conditions is further examined in detail as it pertains to the effect on aerodynamic drag derived from the coastdown data. In order to “box” the conditions acceptable during a coastdown test, a sensitivity analysis was performed for wind averaged drag (CD¯) as well as test cycle averaged drag coefficients (CDWC) for the fuel economy test cycles. Test cycle average drag for average wind speeds up to 16 km/h and temperatures ranging from 5C to 35C, along with variation of barometric pressure and relative humidity are calculated. The significant effect of ambient cross winds on coastdown determined drag coefficient is demonstrated.
Technical Paper

Sensitivity Analysis of Coastdown Test Wind Averaged Drag Coefficient for Several Functions of Drag Coefficient vs. Speed

2020-04-14
2020-01-0663
This paper will explore the effect that non-constant function CD (as observed during wind tunnel testing) would have on the coastdown derived drag coefficient and other regulatory drive cycles. It is common in wind tunnel testing to observe road vehicle drag coefficients that vary with speed. These varying CD values as a function of velocity will be expressed as CD(V) in this paper. Wind tunnel testing for product development is generally conducted at 110 km/h (68.3 mph) which are similar speeds and typical of the United States (US), European, and Asian highway speeds. Reported values of CD are generally gathered at these speeds. However, coastdown testing by definition takes place over a large range of speeds mostly lower than the wind tunnel test speeds. This paper will explore the effect that six typical functions of CD(V) have on the coastdown derived CD. One of the six functions is a constant, to represent a wind tunnel reported CD.
Technical Paper

EGR Distribution in an Intake Manifold: Analysis, Dynamometer Correlation and Prediction

2020-04-14
2020-01-0840
Every passing year automotive engineers are challenged to attain higher fuel economy and improved emission targets. One widely used approach is to use Cooled Exhaust Gas Recirculation (CEGR) to meet these objectives. Apart from reducing emissions and improving fuel economy, CEGR also plays a significant role in knock mitigation in spark ignited gasoline engines. Generally, CEGR is introduced into the intake manifold in SI gasoline engine. Even though the benefits of using CEGR are significant, they can be easily negated by the uneven CEGR flow distribution between the cylinders, which can result in combustion instability. This paper describes the application of co-simulation between one and three dimensional tools to accurately predict the distribution of CEGR to the cylinders and the effect of its distribution on engine performance.
Technical Paper

Reconciling Simultaneous Evolution of Ground Vehicle Capabilities and Operator Preferences

2020-04-14
2020-01-0172
An objective evaluation of ground vehicle performance is a challenging task. This is further exacerbated by the increasing level of autonomy, dynamically changing the roles and capabilities of these vehicles. In the context of decision making involving these vehicles, as the capabilities of the vehicles improve, there is a concurrent change in the preferences of the decision makers operating the vehicles that must be accounted for. Decision based methods are a natural choice when multiple conflicting attributes are present, however, most of the literature focuses on static preferences. In this paper, we provide a sequential Bayesian framework to accommodate time varying preferences. The utility function is considered a stochastic function with the shape parameters themselves being random variables. In the proposed approach, initially the shape parameters model either uncertain preferences or variation in the preferences because of the presence of multiple decision makers.
Technical Paper

Review and Assessment of Multiaxial Fatigue Limit Models

2020-04-14
2020-01-0192
The purpose of this paper is to provide a comparison of multiaxial fatigue limit models and their correlation to experimental data. This paper investigates equivalent stress, critical plane and invariant-based multiaxial fatigue models. Several methods are investigated and compared based on ability to predict multiaxial fatigue limits from data published in literature. The equivalent stress based model developed by Lee, Tjhung and Jordan (LTJ), provides very accurate predictions of the fatigue limit under multiaxial loading due to its ability to account for non-proportional loading. This accuracy comes from the model constant which is calculated based on multiaxial fatigue data. This is the only model investigated that requires multiaxial fatigue testing to generate the model parameters. All other models rely on uniaxial test results.
Technical Paper

Control Oriented Physics Based Three-Way Catalytic Converter Temperature Estimation Model for Real Time Controllers

2020-04-14
2020-01-0904
As automotive emissions become more stringent, accurate control of three-way catalyst temperature is increasingly important for maintaining high levels of conversion efficiency as well as preventing damage to the catalyst. A real-time catalyst temperature model provides critical information to the engine control system. In order to improve emissions and ensure regulatory compliance over a wide range of speed-load conditions, it is desirable to use modelled catalyst temperature as the primary input to catalyst efficiency control strategies. This requirement creates a challenge for traditional empirical models designed for component protection at high speed-load conditions. Simulation results show that a physics aligned model can estimate temperature in all operating conditions, including: cold-start, extended idle, engine shutdown, stop-start events, deceleration fuel shut-off, as well as traditional high load and part load points.
Journal Article

Performance, Efficiency and Emissions Assessment of Natural Gas Direct Injection compared to Gasoline and Natural Gas Port-Fuel Injection in an Automotive Engine

2016-04-05
2016-01-0806
Interest in natural gas as a fuel for light-duty transportation has increased due to its domestic availability and lower cost relative to gasoline. Natural gas, comprised mainly of methane, has a higher knock resistance than gasoline making it advantageous for high load operation. However, the lower flame speeds of natural gas can cause ignitability issues at part-load operation leading to an increase in the initial flame development process. While port-fuel injection of natural gas can lead to a loss in power density due to the displacement of intake air, injecting natural gas directly into the cylinder can reduce such losses. A study was designed and performed to evaluate the potential of natural gas for use as a light-duty fuel. Steady-state baseline tests were performed on a single-cylinder research engine equipped for port-fuel injection of gasoline and natural gas, as well as centrally mounted direct injection of natural gas.
Journal Article

LES of Diesel and Gasoline Sprays with Validation against X-Ray Radiography Data

2015-04-14
2015-01-0931
This paper focuses on detailed numerical simulations of direct injection diesel and gasoline sprays from production grade, multi-hole injectors. In a dual-fuel engine the direct injection of both the fuels can facilitate appropriate mixture preparation prior to ignition and combustion. Diesel and gasoline sprays were simulated using high-fidelity Large Eddy Simulations (LES) with the dynamic structure sub-grid scale model. Numerical predictions of liquid penetration, fuel density distribution as well as transverse integrated mass (TIM) at different axial locations versus time were compared against x-ray radiography data obtained from Argonne National Laboratory. A necessary, but often overlooked, criterion of grid-convergence is ensured by using Adaptive Mesh Refinement (AMR) for both diesel and gasoline. Nine different realizations were performed and the effects of random seeds on spray behavior were investigated.
Journal Article

Practical Implementation of the Two-Measurement Correction Method in Automotive Wind Tunnels

2015-04-14
2015-01-1530
In recent years, there has been renewed attention focused on open jet correction methods, in particular on the two-measurement method of E. Mercker, K. Cooper, and co-workers. This method accounts for blockage and static pressure gradient effects in automotive wind tunnels and has been shown by both computations and experiments to appropriately adjust drag coefficients towards an on-road condition, thus allowing results from different wind tunnels to be compared on a more equitable basis. However, most wind tunnels have yet to adopt the method as standard practice due to difficulties in practical application. In particular, it is necessary to measure the aerodynamic forces on every vehicle configuration in two different static pressure gradients to capture that portion of the correction. Building on earlier proof-of-concept work, this paper demonstrates a practical method for implementing the two-measurement procedure and demonstrates how it can be used for production testing.
Journal Article

Turbulence Models and Model Closure Coefficients Sensitivity of NASCAR Racecar RANS CFD Aerodynamic Predictions

2017-03-28
2017-01-1547
Cost benefit and teraflop restrictions imposed by racing sanctioning bodies make steady-state RANS CFD simulation a widely accepted first approximation tool for aerodynamics evaluations in motorsports, in spite of its limitations. Research involving generic and simplified vehicle bodies has shown that the veracity of aerodynamic CFD predictions strongly depends on the turbulence model being used. Also, the ability of a turbulence model to accurately predict aerodynamic characteristics can be vehicle shape dependent as well. Modifications to the turbulence model coefficients in some of the models have the potential to improve the predictive capability for a particular vehicle shape. This paper presents a systematic study of turbulence modeling effects on the prediction of aerodynamic characteristics of a NASCAR Gen-6 Cup racecar. Steady-state RANS simulations are completed using a commercial CFD package, STAR-CCM+, from CD-Adapco.
Technical Paper

Characterization of Aging Effect on Three-Way Catalyst Oxygen Storage Dynamics

2016-04-05
2016-01-0971
The Three Way Catalyst (TWC) is an effective pollutant conversion system widely used in current production vehicles to satisfy emissions regulations. A TWC’s conversion efficiency degrades over time due to chemical and/or thermal mechanisms causing the catalyst to age. This reduction in conversion efficiency must be accounted for to ensure full useful life emissions compliance. This paper presents an experimental study of the aging impact on TWC performance. Four TWCs differentiated by their age, given in terms of miles driven, were tested. It is shown that the dynamics of oxygen storage are substantially affected by aging of the TWC. A previously developed physics-based oxygen storage model [1] is subsequently used to incorporate the effect of aging on the total Oxygen Storage Capacity (OSC). Parameter identification results for the different age catalysts show that total oxygen storage capacity decreases substantially with aging and is insensitive to operating conditions.
Technical Paper

Methodology to Determine the Effective Volume of Gasoline Particulate Filter Technology on Criteria Emissions

2016-04-05
2016-01-0936
New Particulate Matter (PM) and Particulate Number (PN) regulations throughout the world have created a need for aftertreatment solutions that include particulate control as an option to comply with the legislation. However, limitations in other criteria emissions cannot be sacrificed to accomplish the reduction of PM/PN. For this work, three-way washcoat catalyzed wall-flow Gasoline Particulate Filters (GPF) and similarly catalyzed flow-through catalysts of common defined volume were tested. Their catalytic performance was determined by measuring NOx, CO and HC conversion efficiencies and CO2 levels over the U.S. Federal Test Procedure 75 (FTP-75) and US06 Supplemental Federal Test Procedure (US06) cycles. Analysis of the impact on CO2 emissions was also evaluated in relation to backpressure from 1-D modeling analysis. All exhaust systems used the same loading and ratio of Platinum Group Metals (PGM), but employed different cell structures in their substrates.
Technical Paper

Adapting Design for Six Sigma (DFSS) Methodology for Diesel Lean NOx Trap (LNT) Catalyst Screening

2016-04-05
2016-01-0953
In order to meet LEV III, EURO 6C and Beijing 6 emission levels, Original Equipment Manufacturers (OEMs) can potentially implement unique aftertreatment systems solutions which meet the varying legislated requirements. The availability of various washcoat substrates and PGM loading and ratio options, make selection of an optimum catalyst system challenging, time consuming and costly. Design for Six Sigma (DFSS) methodologies have been used in industry since the 1990s. One of the earliest applications was at Motorola where the methodology was applied to the design and production of a paging device which Consumer Reports called “virtually defect-proof”.[1] Since then, the methodology has evolved to not only encapsulate complicated “Variation Optimization” but also “Design Optimization” where multiple factors are in play. In this study, attempts are made to adapt the DFSS concept and methodology to identify and optimize a catalyst for diesel applications.
Technical Paper

Robust SCR Design Against Environmental Impacts

2016-04-05
2016-01-0954
Significant reduction in Nitrogen Oxide (NOx) emissions will be required to meet LEV III Emissions Standards for Light Duty Diesel passenger vehicles (LDD). As such, Original Equipment Manufacturers (OEMs) are exploring all possible aftertreatment options to find the best balance between performance, robustness and cost. The primary technology adopted by OEMs in North America to achieve low NOx levels is Selective Catalytic Reduction (SCR) catalyst. The critical parameters needed for SCR to work properly are: an appropriate reductant such as ammonia (NH3) typically provided as urea, adequate operating temperatures, and optimum Nitrogen Dioxide (NO2) to NOx ratios (NO2/NOx). The NO2/NOx ratio is mostly influenced by Precious Group Metals (PGM) containing catalysts located upstream of the SCR catalyst. Different versions of zeolite based SCR technologies are available on the market today and these vary in their active metal type (iron, copper, vanadium), and/or zeolite type.
Technical Paper

Aerodynamic Drag of a Vehicle and Trailer Combination in Yaw

2017-03-28
2017-01-1540
Typical production vehicle development includes road testing of a vehicle towing a trailer to evaluate powertrain thermal performance. In order to correlate tests with simulations, the aerodynamic effects of pulling a trailer behind a vehicle must be estimated. During real world operation a vehicle often encounters cross winds. Therefore, the effects of cross winds on the drag of a vehicle–trailer combination should be taken into account. Improving the accuracy of aerodynamic load prediction for a vehicle-trailer combination should in turn lead to improved simulations and better thermal performance. In order to best simulate conditions for real world trailer towing, a study was performed using reduced scale models of a Sport Utility Vehicle (SUV) and a Pickup Truck (PT) towing a medium size cargo trailer. The scale model vehicle and trailer combinations were tested in a full scale wind tunnel.
X