Refine Your Search

Topic

Author

Search Results

Viewing 1 to 16 of 16
Technical Paper

Using the Hybrid FE-SEA Method to Predict and Diagnose Component Transmission Loss

2007-05-15
2007-01-2172
This paper investigates the application of the Hybrid FE-SEA method to the prediction of the Transmission Loss (TL) of a front-of-dash component. SEA subsystems are used to represent the source and receiving chambers of a TL test suite and an FE structural subsystem is used to represent the dash component. The potential advantages of the Hybrid FE-SEA method for this application are that: (i) it can provide detailed narrowband predictions of the radiation efficiency and TL of a given component across a broad frequency range and (ii) the computational cost of the approach is typically several orders of magnitude less than that of traditional low frequency FE/BEM/IEM methods. The approach is also potentially well suited to existing analysis processes since information from detailed component level models can be used to update and refine targets obtained from system level SEA models (the use of a common environment for such models simplifies model management).
Technical Paper

Vehicle Implementation of a GM RWD Six-Speed Integrated-Friction-Launch Automatic Transmission

2007-08-05
2007-01-3747
Friction Launch transmissions use a wet multi-plate clutch to replace the torque converter in an automatic transmission. By using one of the range clutches inside the transmission, the benefits of this integrated friction launch technology (IFL), such as reduction in mass, packaging, and cost, can be enhanced. The availability of new automatic transmissions with higher number of speeds and wider ratio spreads makes IFL technology more viable than ever before. The new GM Rear-Wheel-Drive (RWD) six-speed transmission has paved the way for a full implementation of integrated friction launch technology in a GM full size Sport-Utility Vehicle (SUV). This project focuses on both hardware and control issues with the friction launch clutch. The hardware issues include designing the clutch for launch energy, cooling, and durability.
Technical Paper

Development of an Electronically-Controlled, Limited-Slip Differential (eLSD) for FWD Applications

2007-04-16
2007-01-0925
Limited-slip differentials improve traction and handling when compared to open differentials, but offer no active modulation and can compromise typical driving. A number of passive control systems exist that attempt to reduce this compromise. Electronically controlled limited-slip differentials (eLSD) are being introduced that allow active control of the differential in all driving situations and can be operated as an open differential, a fully locked differential, or at any point between these extremes. Such an eLSD system was implemented in two General Motors front wheel drive cars-one on an automatic transmission and applied by the transmission pump, the other on a manual transmission and applied by an external pump. This eLSD system contains a multi-plate wet clutch connected to the differential carrier and right side half-shaft of an all wheel drive capable transmission.
Technical Paper

A Correlation Study between the Full Scale Wind Tunnels of Chrysler, Ford, and General Motors

2008-04-14
2008-01-1205
A correlation of aerodynamic wind tunnels was initiated between Chrysler, Ford and General Motors under the umbrella of the United States Council for Automotive Research (USCAR). The wind tunnels used in this correlation were the open jet tunnel at Chrysler's Aero Acoustic Wind Tunnel (AAWT), the open jet tunnel at the Jacobs Drivability Test Facility (DTF) that Ford uses, and the closed jet tunnel at General Motors Aerodynamics Laboratory (GMAL). Initially, existing non-competitive aerodynamic data was compared to determine the feasibility of facility correlation. Once feasibility was established, a series of standardized tests with six vehicles were conducted at the three wind tunnels. The size and body styles of the six vehicles were selected to cover the spectrum of production vehicles produced by the three companies. All vehicles were tested at EPA loading conditions. Despite the significant differences between the three facilities, the correlation results were very good.
Technical Paper

Simulating Complex Automotive Assembly Tasks using the HUMOSIM Framework

2009-06-09
2009-01-2279
Efficient methods for simulating operators performing part handling tasks in manufacturing plants are needed. The simulation of part handling motions is an important step towards the implementation of virtual manufacturing for the purpose of improving worker productivity and reducing injuries in the workplace. However, industrial assembly tasks are often complex and involve multiple interactions between workers and their environment. The purpose of this paper is to present a series of industrial simulations using the Human Motion Simulation Framework developed at the University of Michigan. Three automotive assembly operations spanning scenarios, such as small and large parts, tool use, walking, re-grasping, reaching inside a vehicle, etc. were selected.
Technical Paper

Development of Transmission Hardware-in-the-Loop Test System

2003-03-03
2003-01-1027
The automotive industry has long relied on vehicle testing to evaluate drive train components for new vehicle applications. In the past it has been impossible to fully evaluate components such as transmissions in a laboratory environment using electric motors as prime movers and absorbers. Although some durability and performance testing can be accomplished on such test stands it is impossible to perform high fidelity controller calibrations, durability tests, and NVH evaluations. Since the electric motors on these test stands cannot duplicate the exact characteristics of an engine such as inertia and firing pulses many manufacturers have resorted to vehicle testing or engine driven testing. Vehicle and engine based tests have many downfalls that could be avoided through the use of a laboratory based test system with electric prime movers. Vehicle testing with human drivers is often subjectively controlled and the exact test conditions are often unrepeatable.
Technical Paper

The Use of in Vehicle STL Testing to Correlate Subsystem Level SEA Models

2003-05-05
2003-01-1564
For the assessment of vehicle acoustics in the early design stages of a vehicle program, the use of full vehicle SEA models is becoming the standard analysis method in the US automotive industry. One benefit is that OEM's and Tier 1 suppliers are able to cascade lower level acoustic performance targets for NVH systems and components. Detailed SEA system level models can be used to assess the performance of systems such as dash panels, floors and doors, however, the results will be questionable until test data Is available. Correlation can be accomplished with buck testing, which is a common practice in the automotive industry for assessing the STL (sound transmission loss) of vehicle level components. The opportunity to conduct buck testing can be limited by the availability of representative bodies to be cut into bucks and the availability of a transmission loss suite with a suitably large opening.
Technical Paper

Self-Tuning PID Design for Slip Control of Wedge Clutches

2017-03-28
2017-01-1112
The wedge clutch takes advantages of small actuation force/torque, space-saving and energy-saving. However, big challenge arises from the varying self-reinforced ratio due to the varying friction coefficient inevitably affected by temperature and wear. In order to improve the smoothness and synchronization time of the slipping process of the wedge clutch, this paper proposes a self-tuning PID controller based on Lyapunov principle. A new Lyapunov function is developed for the wedge clutch system. Simulation results show that the self-tuning PID obtains much less error than the conventional PID with fixed gains. Moreover, the self-tuning PID is more adaptable to the variation of the friction coefficient for the error is about 1/5 of the conventional PID.
Technical Paper

A Study on the Camshaft Lobe Microstructure Obtained by Different Processing

2012-10-02
2012-36-0499
The present work aims to characterize the microstructure of valvetrain camshaft lobes that are currently applied in the automotive industry, obtained by different processing routes. The cam lobe microstructure has been assessed by microscopy, whereas the mechanical properties by hardness profile measurements on the surface region. Microconstituents type and form, composing the final microstructure at the cam lobe work region, are defined by the casting route and/or post-heat treatment process other than alloy chemical composition, so that knowledge and control of processing route is vital to assure suitable valvetrain system assembly performance and durability. Most of the mechanical solicitations on the part occur at the interface between cam and follower; the actual contact area is significantly smaller than the apparent area. As a result, the microstructure at and near the surface performs a direct role on the performance of the valvetrain, cam lobe and its counterpart.
Technical Paper

Comparative Analysis of Single and Combined Hybrid Electrically Variable Transmission Operating Modes

2005-04-11
2005-01-1162
Electrically variable transmissions divide power between the electrical and mechanical paths using input, output, or compound split schemes. When combined with an electrical energy storage element such as a battery, these systems allow numerous fuel saving and performance benefits. This paper examines the design tradeoffs in each of the three topologies in order to balance fuel economy, system performance against requirements, and electrical component size. A general EVT analysis method is presented and used to study the fuel economy and performance sensitivity of the three configurations to motor, inverter, and battery constraints, and planetary gear ratios. To evaluate fuel economy, the three systems are assessed for each of the primary fuel economy mechanisms enabled by hybridization. To evaluate performance tradeoffs, system performance against typical vehicle performance design points is compared.
Journal Article

The Next Generation “Voltec” Extended Range EV Propulsion System

2015-04-14
2015-01-1152
The Chevrolet Volt is an electric vehicle (EV) with extended-range (ER) that is capable of operation on battery power alone, and on power generated by an on-board gasoline engine after depletion of the battery charge. For 2016, GM has developed the next generation of the Volt vehicle and “Voltec” propulsion system. Building on the experience of the first generation Volt, the second generation targeted improved all-electric range, improved charge sustaining fuel economy, and improved performance. All of this was to be accomplished while maintaining the EV character of the first generation Volt which customers clearly valued. This paper describes the next generation “Voltec” system and the realized improvements in efficiency and performance. The features of the propulsion system components, including energy storage, transaxle, electric motors and power electronics, on-board charging, and engine are described and compared with the previous generation.
Technical Paper

Better performance in fine-grain steel for transmission

2023-02-10
2022-36-0033
Manual transmissions for passenger cars are facing pressures due to rapid growth of automatic transmissions, which already represents more than 60% of Brazil market, and from higher torque demand due to strict emission legislation, which turbo engines had presented great contribution to it. To solve this contradictory issue, gears with higher strength and lower cost have been studied to replacement Nickel by Niobium in the steels. Furthermore, this technology could be applied to solve the issues with electrified vehicle, where high torque, speed and lifetime are demanded pursued for gears. This study aimed to build prototypes and compare the S-N curves, fracture analysis, microstructure for three kinds of steels (QS4321 with Ni, QS1916 FG without Ni & with Nb and QS 1916 without Ni and Nb) in the condition carburized, hardened and tempered with and without shot peening.
Technical Paper

Planetary Carrier Staking Groove Optimization

2019-01-09
2019-26-0239
Simple planetary gears are widely used in automobile industry due to their compact design and high power density. A simple planetary gear set consists of a Sun gear, Ring gear, Planets and Carrier which houses planet gears. Mounting of planet pinions on carrier is through pins which is supported on needle roller bearings. A process called staking is used to assemble the pinion pins on to the carrier. Pinion pins have a staking region which after assembly expands outward into staking groove on the carrier to prevent axial movement of the pins. Design of the groove plays a vital role for the fixation of planet pins and robustness a carrier. Planetary carrier staking grooves are designed to meet pinion pin retention and strength targets.
Technical Paper

Achievements and Exploitation of the AUTOSAR Development Partnership

2006-10-16
2006-21-0019
Reductions of hardware costs as well as implementations of new innovative functions are the main drivers of today's automotive electronics. Indeed more and more resources are spent on adapting existing solutions to different environments. At the same time, due to the increasing number of networked components, a level of complexity has been reached which is difficult to handle using traditional development processes. The automotive industry addresses this problem through a paradigm shift from a hardware-, component-driven to a requirement- and function-driven development process, and a stringent standardization of infrastructure elements. One central standardization initiative is the AUTomotive Open System ARchitecture (AUTOSAR). AUTOSAR was founded in 2003 by major OEMs and Tier1 suppliers and now includes a large number of automotive, electronics, semiconductor, hard- and software companies.
Technical Paper

Defining the General Motors 2-Mode Hybrid Transmission

2007-04-16
2007-01-0273
The new General Motors 2-Mode Hybrid transmission for full-size, full-utility SUVs integrates two electro-mechanical power-split operating modes with four fixed gear ratios and provides fuel savings from electric assist, regenerative braking and low-speed electric vehicle operation. A combination of two power-split modes reduces the amount of mechanical power that must be converted to electricity for continuously variable transmission operation. Four fixed gear ratios further improve power transmission capacity and efficiency for especially demanding maneuvers such as full acceleration, hill climbing, and towing. This paper explains the basics of electro-mechanical power-split transmissions, input-split and compound-split modes, and the addition of fixed gear ratios to these modes to create the 2-Mode Hybrid transmission for SUVs.
Technical Paper

Parametric Optimization of Planetary Carrier for Durability

2019-01-09
2019-26-0049
Planetary gear set is one of the most commonly used gear systems in automotive industry as they cater to high power density requirements. A simple planetary gear set consists of a sun gear, ring gear, planets and carrier which houses planet gears. Efficiency of a transmission is dependent upon performance of gear sets involved in power transfer to a great extent. Structural rigidity of a planetary carrier is critical in a planetary gear set as its deflection may alter the load distribution of gears in mesh causing durability and noise issues. Limited studies exist based on geometrical parameters of a carrier which would help a designer in selecting the dimensions at an early stage. In this study, an end to end automated FEA process based on DOE and optimization in Isight is developed. The method incorporates a workflow allowing for an update of carrier geometry, FE model setup, analysis job submission and post-processing of results.
X