Refine Your Search

Topic

Author

Search Results

Journal Article

Optical Investigation of Dual-fuel CNG/Diesel Combustion Strategies to Reduce CO2 Emissions

2014-04-01
2014-01-1313
Dual-fuel combustion strategies combining a premixed charge of natural gas and a pilot injection of diesel fuel offer the potential to reduce CO2 emissions as a result of the high Hydrogen/Carbon (H/C) ratio of methane gas. Moreover, the high octane number of methane means that dual-fuel combustion strategies can be employed on compression ignition engines without the need to vary the engine compression ratio, thereby significantly reducing the cost of engine hardware modifications. The aim of this investigation is to explore the fundamental combustion phenomena occurring when methane is ignited with a pilot injection of diesel fuel. Experiments were performed on a single-cylinder optical research engine which is typical of modern, light-duty diesel engines. A high-speed digital camera recorded time-resolved combustion luminosity and an intensified CCD camera was used for single-cycle OH*chemiluminescence imaging.
Journal Article

Characterization of a Set of ECN Spray A Injectors: Nozzle to Nozzle Variations and Effect on Spray Characteristics

2013-09-08
2013-24-0037
The Engine Combustion Network (ECN) is becoming a leading group concerning the experimental and computational analysis of Engine combustion. In order to establish a coherent database for model validation, all the institutions participating to the experimental effort carry out experiments at well-defined standard conditions (in particular at Spray A conditions: 22.8kg/m3, 900K, 0% and 15% O2) and with Diesel injectors having the same specifications. Due to the rising number of ECN participants and also to unavoidable damages, additional injectors are required. This raises the question of injector's characteristics reproducibility and of the appropriate method to introduce such new injectors in the ECN network. In order to investigate this issue, a set of 8 new injectors with identical nominal Spray A specification were purchased and 4 of them were characterized using ECN standard diagnostics.
Journal Article

Stabilization of Highly Diluted Gasoline Direct Injection Engine using Innovative Ignition Systems

2014-10-13
2014-01-2598
Dilution is a promising way to improve fuel economy of Spark-Ignited (SI) gasoline engines. In this context, influence of innovative ignition systems on the dilution acceptance of a 400cc optical GDI engine has been studied. Several systems were tested and compared to a conventional coil: a dual-coil system and two nanosecond scaled plasma generators. Two operating points were studied: 2.8bar IMEP (net) at 2000rpm and 9bar IMEP (net) at 1200rpm. Two diluents were evaluated: real EGR and air (lean combustion). High-speed imaging at frequency up to 10kHz was performed to visualize both spark and combustion initiation and propagation. Voltage and current were measured to infer the energy deposited in the spark plug gap. The dual-coil DCO™ system and the nanosecond multi-pulse plasma generator at their maximum power showed an ability to extend the dilution range of the engine.
Journal Article

On the Effects of EGR on Spark-Ignited Gasoline Combustion at High Load

2014-10-13
2014-01-2628
EGR dilution is a promising way to improve fuel economy of Spark-Ignited (SI) gasoline engines. In particular, at high load, it is very efficient in mitigating knock at low speed and to decrease exhaust temperature at high speed so that fuel enrichment can be avoided. The objective of this paper is to better understand the governing mechanisms implied in EGR-diluted SI combustion at high load. For this purpose, measurements were performed on a modern, single-cylinder GDI engine (high tumble value, multi-hole injector, central position). In addition 0-D and 1-D Chemkin simulations (reactors and flames) were used to complete the engine tests so as to gain a better understanding of the physical mechanisms. EGR benefits were confirmed and characterized at 19 bar IMEP: net ISFC could be reduced by 17% at 1200rpm and by 6% at 5000rpm. At low speed, knock mitigation was the main effect, improving the cycle efficiency by a better combustion phasing.
Journal Article

A Comparative Low Speed Pre-Ignition (LSPI) Study in Downsized SI Gasoline and CI Diesel-Methane Dual Fuel Engines

2014-10-13
2014-01-2688
Low speed pre-ignition (LSPI) in downsized spark-ignition engines has been studied for more than a decade but no definitive explanation has been found regarding the exact sources of auto-ignition. No single mechanism can explain all the occurrences of LSPI and that each engine should be considered as a particular case supporting different conditions for auto-ignition. In a different context, dual fuel Diesel-Methane engines have been more recently studied in large to medium bore compression ignition engines. However, if Dual Fuel combustion is less knock sensitive, LSPI remains one of the main limitations of low-end torque also for dual fuel engines. Indeed, in some cases, premature ignition of CNG can be observed before the Diesel pilot injection as LSPI can classically be observed before the spark in gasoline engines. This article aims at highlighting the similarities and discrepancies between LSPI phenomena in SI gasoline and dual fuel engines.
Journal Article

Investigation on the Potential of Quantitatively Predicting CCV in DI-SI Engines by Using a One-Dimensional CFD Physical Modeling Approach: Focus on Charge Dilution and In-Cylinder Aerodynamics Intensity

2015-09-06
2015-24-2401
Increasingly restrictive emission standards and CO2 targets drive the need for innovative engine architectures that satisfy the design constraints in terms of performance, emissions and drivability. Downsizing is one major trend for Spark-Ignition (SI) engines. For downsized SI engines, the increased boost levels and compression ratios may lead to a higher propensity of abnormal combustions. Thus increased levels of Exhaust Gas Recirculation (EGR) are used in order to limit the appearance of knock and super-knock. The drawback of high EGR rates is the increased tendency for Cycle-to-Cycle Variations (CCV) it engenders. A possible way to reduce CCV could be the generation of an increased in-cylinder turbulence to accelerate the combustion process. To manage all these aspects, 1D simulators are increasingly used. Accordingly, adapted modeling approaches must be developed to deal with all the relevant physics impacting combustion and pollutant emissions formation.
Technical Paper

Identifying the Driving Processes of Diesel Spray Injection through Mixture Fraction and Velocity Field Measurements at ECN Spray A

2020-04-14
2020-01-0831
Diesel spray mixture formation is investigated at target conditions using multiple diagnostics and laboratories. High-speed Particle Image Velocimetry (PIV) is used to measure the velocity field inside and outside the jet simultaneously with a new frame straddling synchronization scheme. The PIV measurements are carried out in the Engine Combustion Network Spray A target conditions, enabling direct comparisons with mixture fraction measurements previously performed in the same conditions, and forming a unique database at diesel conditions. A 1D spray model, based upon mass and momentum exchange between axial control volumes and near-Gaussian velocity and mixture fraction profiles is evaluated against the data.
Journal Article

Simulation and Optical Diagnostics to Characterize Low Octane Number Dual Fuel Strategies: a Step Towards the Octane on Demand Engine

2016-10-17
2016-01-2164
Reduction of CO2 emissions is becoming one of the great challenges for future gasoline engines. Downsizing is one of the most promising strategies to achieve this reduction, though it facilitates occurrence of knocking. Therefore, downsizing has to be associated with knock limiting technologies. The aim of the current research program is to adapt the fuel Research-Octane-Number (RON) injected in the combustion chamber to prevent knock occurrence and keep combustion phasing at optimum. This is achieved by a dual fuel injection strategy, involving a low-RON naphtha-based fuel (Naphtha, RON 71) and a high-RON octane booster (Ethanol, RON107). The ratio of fuel quantity on each injector is adapted to fit the RON requirement as a function of engine operating conditions. Hence, it becomes crucial to understand and predict the mixture preparation, to quantify its spatial and cycle-to-cycle variations and to apprehend the consequences on combustion behavior - knock especially.
Technical Paper

Study of ECN Injectors’ Behavior Repeatability with Focus on Aging Effect and Soot Fluctuations

2016-04-05
2016-01-0845
The Engine Combustion Network (ECN) has become a leading group concerning the experimental and computational analysis of engine combustion phenomena. In order to establish a coherent database for model validation, all the institutions participating in the experimental effort carry out tests at well-defined boundary conditions and using wellcharacterized hardware. In this framework, the reference Spray A injectors have produced different results even when tested in the same facility, highlighting that the nozzle employed and its fouling are important parameters to be accounted for. On the other hand, the number of the available Spray A injectors became an issue, due to the increasing number of research centers and simultaneous experiments taking place in the ECN community. The present work has a double aim: on the one hand, to seek for an appropriate methodology to “validate” new injectors for ECN experiments and to provide new hardware for the ECN community.
Technical Paper

The Impact of Intake Valve Dynamics on Knock Propensity in a Dual-Fuel SI Engine

2017-10-08
2017-01-2236
In this study, the impact of the intake valve timing on knock propensity is investigated on a dual-fuel engine which leverages a low octane fuel and a high octane fuel to adjust the fuel mixture’s research octane rating (RON) based on operating point. Variations in the intake valve timing have a direct impact on residual gas concentrations due to valve overlap, and also affect the compression pressure and temperature by altering the effective compression ratio (eCR). In this study, it is shown that the fuel RON requirement for a non-knocking condition at a fixed operating point can vary significantly solely due to variations of the intake valve timing. At 2000 rpm and 6 bar IMEP, the fuel RON requirement ranges from 80 to 90 as a function of the intake valve timing, and the valve timing can change the RON requirement from 98 to 104 at 2000 rpm and 14 bar IMEP.
Technical Paper

Combustion Optimization of a Multi-Cylinder CI Engine Running with a Low RON Gasoline Fuel Considering Different Air Loop and After-Treatment Configurations

2017-10-08
2017-01-2264
Recent work has demonstrated the potential of gasoline-like fuels to reduce NOx and particulate emissions when used in compression ignition engines. In this context, low research octane number (RON) gasoline, a refinery stream derived from the atmospheric crude oil distillation process, has been identified as a highly valuable fuel. In addition, thanks to its higher H/C ratio and energy content compared to diesel, CO2 benefits are also expected when used in such engines. In previous studies, different cetane number (CN) fuels have been evaluated and a CN 35 fuel has been selected. The assessment and the choice of the required engine hardware adapted to this fuel, such as the compression ratio, bowl pattern and nozzle design have been performed on a single cylinder compression-ignition engine.
Technical Paper

An Innovative Approach Combining Adaptive Mesh Refinement, the ECFM3Z Turbulent Combustion Model, and the TKI Tabulated Auto-Ignition Model for Diesel Engine CFD Simulations

2016-04-05
2016-01-0604
The 3-Zones Extended Coherent Flame Model (ECFM3Z) and the Tabulated Kinetics for Ignition (TKI) auto-ignition model are widely used for RANS simulations of reactive flows in Diesel engines. ECFM3Z accounts for the turbulent mixing between one zone that contains compressed air and EGR and another zone that contains evaporated fuel. These zones mix to form a reactive zone where combustion occurs. In this mixing zone TKI is applied to predict the auto-ignition event, including the ignition delay time and the heat release rate. Because it is tabulated, TKI can model complex fuels over a wide range of engine thermodynamic conditions. However, the ECFM3Z/TKI combustion modeling approach requires an efficient predictive spray injection calculation. In a Diesel direct injection engine, the turbulent mixing and spray atomization are mainly driven by the liquid/gas coupling phenomenon that occurs at moving liquid/gas interfaces.
Technical Paper

Potential of CN25 Naphtha-Based Fuel to Power Compression Ignition Engines

2016-04-05
2016-01-0765
Recent work has demonstrated the potential of gasoline-like fuels to reduce NOx and particulate emissions when used in Diesel engines. In this context, straight-run naphtha, a refinery stream directly derived from the atmospheric crude oil distillation process, has been identified as a highly valuable fuel. The current study is one step further toward naphtha-based fuel to power compression ignition engines. The potential of a cetane number 25 fuel (CN25), resulting from a blend of hydro-treated straight-run naphtha CN35 with unleaded non-oxygenated gasoline RON91 was assessed. For this purpose, investigations were conducted on multiple fronts, including experimental activities on an injection test bed, in an optically accessible vessel and in a single cylinder engine. CFD simulations were also developed to provide relevant explanations.
Technical Paper

How to Improve Light Duty Diesel Based on Heavy Duty Diesel Thermodynamic Analysis?

2013-04-08
2013-01-1623
The Diesel engine has now become a vital component of the transport sector, in view of its performance in terms of efficiency and therefore CO2 emissions some 25 % less than a traditional gasoline engine, its main competitor. However, the introduction of more and more stringent regulations on engine emissions (NOx, PM) requires complex after-treatment systems and combustion strategies to decrease pollutant emissions (regeneration strategies, injection strategies, …) with some penalty in fuel consumption. It becomes necessary to find new ways to improve the Diesel efficiency in order to maintain its inherent advantage. In the present work, we are looking for strategies and technologies to reduce Diesel engine fuel consumption. Based on the observation that large Diesel engines have a better efficiency than the smaller ones, a detailed thermodynamic combustion analysis of one Heavy Duty (HD) engine and two Passenger car (PC) engines is performed to understand these differences.
Technical Paper

Numerical and Experimental Investigation of Combustion Regimes in a Dual Fuel Engine

2013-09-08
2013-24-0015
Among the new combustion concepts envisaged to meet future regulations, the Dual Fuel (DF) concept is considered to be an attractive strategy due to its potential to reduce CO2 emissions and engine-out pollutant emissions levels. A small quantity of high-cetane fuel (Diesel) is injected in the combustion chamber in order to ignite a homogeneous mixture of air and a highly volatile fuel (gasoline in our study). The DF concept has been shown to achieve improved engine thermal efficiency and low engine-out NOx and soot emissions. However, the physical mechanisms controlling DF combustion and in particular, determination of the predominant combustion regime(s) are not yet well understood. In this study, numerical simulations (CFD) and optical engine measurements are used to investigate Dual Fuel combustion.
Technical Paper

Experimental and Numerical Analysis of Diluted Combustion in a Direct Injection CNG Engine Featuring Post- Euro-VI Fuel Consumption Targets

2018-04-03
2018-01-1142
The present paper is concerned with part of the work performed by Renault, IFPEN and Politecnico di Torino within a research project founded by the European Commission. The project has been focused on the development of a dedicated CNG engine featuring a 25% decrease in fuel consumption with respect to an equivalent Diesel engine with the same performance targets. To that end, different technologies were implemented and optimized in the engine, namely, direct injection, variable valve timing, LP EGR with advanced turbocharging, and diluted combustion. With specific reference to diluted combustion, it is rather well established for gasoline engines whereas it still poses several critical issues for CNG ones, mainly due to the lower exhaust temperatures. Moreover, dilution is accompanied by a decrease in the laminar burning speed of the unburned mixture and this generally leads to a detriment in combustion efficiency and stability.
Technical Paper

The Dual Flame Model (DFM) : A Phenomenological 0D Diesel Combustion Model to Predict Pollutant Emissions

2015-09-06
2015-24-2388
IFP Energies nouvelles (IFPEN) has a large experience in the development of engine simulation platforms. During the last decade, the Dual Flame Model (DFM), a physical 0-dimensional (0D) combustion model designed for Diesel applications, was developed and continuously improved. The DFM formalism allows to represent quite precisely the in-cylinder combustion process scenario, by accounting for the first order relevant physics impacting fuel oxidation. First of all, this allows to account for the impact of engine actuators on combustion (e.g. injection systems performing complex injection strategies, Low Pressure and High Pressure EGR loops,…) and then to describe the pollutant emissions formation processes, being chemical kinetics strongly dependent on the in-cylinder thermochemical conditions. The aim of this communication is to present the potential of using the DFM model in the different stages of a Diesel engine development process for pollutant emissions optimization.
Technical Paper

Automatic Body Fitted Hybrid Mesh Generation for Internal Combustion Engine Simulation

2014-04-01
2014-01-1133
An automatic mesh generation process for a body fitted 3D CFD code is presented in this paper along with the methodology to guarantee the mesh quality. This tool named OMEGA (Optimized MEsh Generation Automation) uses a direct coupling procedure between the IFP-C3D solver and a hybrid mesher Centaur. Thanks to this automatic procedure, the engineering time needed for body fitted 3D CFD simulation in internal combustion engines is drastically reduced from a few weeks to a few hours. Valve and piston motion laws are just given as input files and geometries and meshes are automatically moved and generated. Unlike other procedures, this automatic mesh generation does not use an intermediate geometry discretization (STL file, tetrahedral surface mesh) but directly the original CAD that has been modified thanks to the geometry motion functionalities integrated into the mesher.
Technical Paper

Refinement and Validation of the Thermal Stratification Analysis: A post-processing methodology for determining temperature distributions in an experimental HCCI engine

2014-04-01
2014-01-1276
Refinements were made to a post-processing technique, termed the Thermal Stratification Analysis (TSA), that couples the mass fraction burned data to ignition timing predictions from the autoignition integral to calculate an apparent temperature distribution from an experimental HCCI data point. Specifically, the analysis is expanded to include all of the mass in the cylinder by fitting the unburned mass with an exponential function, characteristic of the wall-affected region. The analysis-derived temperature distributions are then validated in two ways. First, the output data from CFD simulations are processed with the Thermal Stratification Analysis and the calculated temperature distributions are compared to the known CFD distributions.
Technical Paper

Exploring and Modeling the Chemical Effect of a Cetane Booster Additive in a Low-Octane Gasoline Fuel

2019-09-09
2019-24-0069
Increasing the internal combustion engine efficiency is necessary to decrease their environmental impact. Several combustion systems demonstrated the interest of low temperature combustion to move toward this objective. However, to ensure a stable combustion, the use of additives has been considered in a several studies. Amongst them, 2-Ethylhexyl nitrate (EHN) is considered as a good candidate for these systems but characterizing its chemical effect is required to optimize its use. In this study, its promoting effect (0.1 - 1% mol.) on combustion has been investigated experimentally and numerically in order to better characterize its behavior under different thermodynamic and mixture. Rapid compression machine (RCM) experiments were carried out at equivalence ratio 0.5 and pressure 10 bar, from 675 to 995 K. The targeted surrogate fuel is a mixture of toluene and n-heptane in order to capture the additive effect on both cool flame and main ignition.
X