Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Innovative Method of Child Injury Performance Optimization using Sled Tests

2021-09-22
2021-26-0008
Child injury performance evaluation is becoming critical part of almost all legal and consumer ratings-based vehicle safety evaluation protocols. Most of New CAR Assessment Programs (NCAP) now have separate ratings exclusively to evaluate child restraint system effectiveness and child dummy performance under various crash testing modes. OEM’s have need and challenge to maximize injury performance. Sled tests are conventionally used for tuning restraints like seat belts and airbags for driver and co-driver under various frontal type test conditions. However, second row seats are used for CRS/ Child injury performance evaluations. In the present study an attempt is made to simulate child injury performance of P3 dummy positioned on second row seat on defined child seat for 64 kmph frontal Offset deformable barrier type test conforming to Global NCAP. Sled pulses are carefully tuned to capture key injury patterns. Thence restraint parameters are tuned to improve child dummy injuries
Technical Paper

Polypropylene Copolymer Automotive Canopy Plastic Structure Application

2018-04-03
2018-01-0157
This paper describes modified polypropylene copolymer (PPCP) material for canopy plastic structure in a modular commercial passenger vehicle. This compounded PPCP material has optimized flow behavior, tensile strength, modulus, impact strength, and thermal properties to meet the functional requirements. Material described in this paper is a PPCP compound reinforced with glass fiber and mica filler. The application described in this paper is a canopy plastic structure, which is a structural exterior plastic part. Canopy plastic structure acts as a structural frame to hold vinyl canopy in both sides and tail gate of vehicle. In this paper, PPCP has been explored for canopy plastic structure part against conventional polyamides. Structural durability of the design was validated by virtual engineering. Part design and material combinations with better tooling design iterations were analyzed by using mold flow analysis.
Technical Paper

A 0-D Calculation Template to Define Crush Space Requirement and Body Front End Force Level Requirement in Concept Stage

2017-01-10
2017-26-0009
Today’s automotive world has moved towards an age where safety of a vehicle is given the topmost priority. Many stringent crash norms and testing methodology has been defined in order to evaluate the safety of a vehicle prior to its launch in a particular market. If the vehicle fails to meet any of these criteria then it is debarred from that particular market. With such stringent norms and regulations in place it becomes quite important on the engineer’s part to define the structural requirements and protect the space to meet the same. If the concept level platform definition is done properly it becomes very easy to achieve the crash targets with less cost and weight impact.
Technical Paper

Design of Energy Absorbing Plastic Brackets to Meet Rear Crash Regulation ECE R42

2019-10-11
2019-28-0041
Vehicle safety and adherence to rules and regulation is of utmost requirement for any OEM. ECE R42 is one of the most important test criteria for a vehicle to get launched. To prove this, we shall discuss the case of Low speed impact structure construction. In this paper, we are going to demonstrate the novel design of Polymer energy absorption structure to meet the rear bumper low speed impact test and ensure proper absorption of impact energy and avoid any damage to rear lamp of the vehicle. This paper shows a perfect example of sustainability with the help of complete modular construction of the frame structure. The proposed design uses a cost-effective way of assembling the physical part by comparing with benchmarking and within the Mahindra part library. The low speed impact structure is mounted directly to BIW panels without any extra foams. These frame structure are simple in design and rigid in construction by comparing with other OEM products and within all Mahindra vehicles.
Journal Article

Polypropylene Composite Material for Light Weight Fuel Tank Protection Shield

2022-03-29
2022-01-0336
The fuel tank shield provides a protective boundary between the fuel tank and vehicle driveline in the event of a high-speed crash. Hence, it is important from the safety standpoint. The part must be carefully engineered to meet the challenging requirements in terms of stiffness, deflection, toughness, dimensional stability and thermal stability. In this paper, long glass fibre filled polypropylene material compound was selected and developed to meet the mentioned requirements for this part with significant mass reduction over other materials. The combination of material, optimized part and tool design led to weight savings and considerable cost reduction. This is a ready to mold material used in injection molding process. This long glass fibre reinforced polypropylene compound has been explored for thin wall protection shield with wall thickness of 2.5 mm.
X