Refine Your Search

Topic

Author

Search Results

Journal Article

Improving STL Performance of Automotive Carpets with Multi-layering and Effective Decoupling

2015-01-14
2015-26-0136
Automotive floor carpet serves the purpose of insulating airborne noises like road-tire noise, transmission noise, fuel pump noise etc. Most commonly used automotive floor carpet structure is- molded sound barrier (PE, vinyl etc.) decoupled from the floor pan with an absorber such as felt. With increasing customer expectations and fuel efficiency requirements, the NVH requirements are increasing as well. The only possible way of increasing acoustic performance (Specifically, Sound Transmission Loss, STL) in the mentioned carpet structure is to increase the barrier material. This solution, however, comes at a great weight penalty. Theoretically, increasing the number of decoupled barrier layers greatly enhances the STL performance of an acoustic packaging for same weight. In practice, however, this solution presents problems like- ineffectiveness at lower frequencies, sudden dip in performance at modal frequencies.
Technical Paper

Use of Machine Learning to Predict the Injuries of the Occupant of a Vehicle Involved in an Accident

2021-09-22
2021-26-0003
As per the 2018 MoRTH accident report, there were 467,044 accidents, out of which 137,726 were fatal which resulted in 151,417 fatalities. In order to get an idea of the reasons for injuries and estimate the benefits of any intervention, a mathematical model should go a long way. This study is aimed at the development of such a model to predict the injuries sustained by the occupants of an M1 vehicle. We used a detailed accident database of 'Road Accident Sampling System India' (RASSI). RASSI, since 2011, has been collecting traffic accident data scientific across various locations in India. In the data, the occupant injuries are classified as No injury, Minor, Serious and Fatal We used the data of about 4700+ M1 occupants for the study & used almost 40 input parameters to determine the outcome. Based on the data, an algorithm was developed with an overall accuracy of about 67%. The parameters represented human, infrastructure, and environment.
Technical Paper

Variation in Automotive Shock Absorber Damping Characteristics & Their Effects on Ride Comfort Attribute and Vehicle Yaw Response

2021-09-22
2021-26-0081
In a Passive suspension, a shock absorber generates damping force by pressurizing the oil flow between chambers. Typically, vehicle responds with suspension deflection, which significantly depends on damping forces and suspension velocity. Tuning dampers for various roads and steering input is an iterative balancing process. In any setting, damping force w.r.t velocity is tuned for optimum ride and handling performance. Practically, to achieve a balance between the two is a tedious task as the choices & arrangements of inner parts like piston, port, valve etc., which defines the forces set up [soft / hard] are almost infinite. The objective of this paper is to measure, objectify and evaluate the performance of two such optimum setting in various ride and handling events. A passenger car set up with an optimum soft & hard suspension damping force is studied for various ride and handling sub-attributes and their conflicts are examined in detail from a performance point of view:
Technical Paper

Application of Electromagnets in Windshield Wipers

2021-09-22
2021-26-0510
The most widely used type of windshield wiper system employs a coil spring for wiper arm pressure generation. This spring is fixed between the arm head (fixed part) and wiper arm (moving part) and the tension in the spring is responsible for pressure generation. The present arrangement although being unsophisticated design, has following drawbacks: Inability to change wiper arm pressure according to change in vehicle speed. Inability to provide constant arm pressure during the complete range of motion along varying curvature of windshield. Inability to reduce/remove the continuous pressure on wiper blade when vehicle is parked for long durations resulting in permanent deformation of wiper blade rubber. This paper describes how electromagnets can be used to overcome the above stated inherent limitations of the windshield wiper system. An electromagnet is a device which produces magnetic field on application of electric current.
Technical Paper

Improving Rough Road NVH by Hydraulic Mount Design Optimization

2020-04-14
2020-01-0422
Vehicle cabin comfort emphasizes a specific image of a brand and its product quality. Low frequency powertrain induced noise and vibration levels are a major contributor affecting comfort inside passenger cabin. Thus, using hydraulic mount is a natural choice. Introduction of lighter body panels coupled with cost effective hydraulic mounts has resulted in some additional noises on rough road surfaces which are challenging to identify during design phase. This paper presents a novel approach to identify two such noises i.e. Cavitation noise and Mount membrane hitting noise based on component level testing which are validated at vehicle experimentally. These noises are encountered at 20~30kmph on undulated road surfaces. Sound quality aspect of such noises is also studied to evaluate the solution effectiveness.
Technical Paper

Design for Improvement in Steering Vibration Performance in a Passenger Vehicle

2017-03-28
2017-01-0439
In urban driving conditions, the steering vibration plays a major role for a customer, spending a significant amount of time behind the steering wheel. Considering the urban drive at Indian roads, 1000~1600rpm band becomes primary area of concern. In this paper, study has been conducted to define the target areas as well as its achievement in reference to given driving pattern on a front wheel powered passenger car for steering vibration. During the concept stage of vehicle development, a target characteristic of steering wheel vibration was defined based on the competitor model benchmarking and prior development experience. A correlated CAE model was prepared to evaluate the modification prior to prototype building and verification. Vibration level in all 3 degrees of freedom at the steering wheel location was measured in the initial vehicle prototypes and target areas of improvement are identified.
Technical Paper

Approaches of NVH Improvements for Fuel Pump Noise Issues

2017-03-28
2017-01-0442
With the increasing expectation of customer for a quiet and comfortable ride, automobile manufacturers need to continuously work upon to improve automobile powertrain NVH. Today’s customer has become so aware of vehicle related noises that in-tank fuel pump noise is no exception to the checklist of evaluating cabin NVH. In-tank fuel pump, that is responsible for delivering the fuel from fuel storage tank to delivery rail, uses an electric driven motor. The rotating parts such as rotor, etc. produce vibrations that may traverse to tank body & subsequently vehicle body. Since noise is essentially an audible vibration at its root, these structure borne vibrations may be perceived as noise inside passenger cabin. Additionally, the noise may also be produced by fuel flow pulsations if transferred through piping to vehicle body. This paper focuses on various approaches to reduce the fuel pump generated noise heard inside passenger cabin.
Technical Paper

Optimization of Radiator Fan for NVH Improvement

2017-01-10
2017-26-0210
With the development of automobile industry, customer awareness about NVH (Noise, Vibration and Harshness) levels in passenger vehicles and demands for improving the riding comfort has increased. This has prompted automobile OEMs to address these parameters in design stage by investing resources in NVH research and development for all components. Better NVH of Radiator Fan Module (RFM) is one of the parameters which contributes to cabin comfort. The basic objective of RFM is to meet engine heat rejection requirements with optimized heat transfer and air flow while maintaining NVH within acceptable levels. The rotating fan (generally driven by an electric motor), if not balanced properly, can be a major source of vibration in the RFM. The vibration generated thus, can be felt by customer through the vehicle body.
Technical Paper

Fuel Efficient Algorithm for Climate Control in Next Generation Vehicles

2017-01-10
2017-26-0370
Automobile industry is shifting its focus from conventional fuel vehicles to NexGen vehicles. The NexGen vehicles have electrical components to propel the vehicle apart from mechanical system. These vehicles have a goal of achieving better fuel efficiency along with reduced emissions making it customer as well as environment friendly. Idle start-stop is a key feature of NexGen vehicles, where, the Engine ECU switches to engine stop mode while idling to cut the fuel consumption and increase fuel efficiency. Engine restarts when there is an input from driver to run the vehicle. There is always a clash between the Engine ECU and automatic climate control unit (Auto-AC) either to enter idle stop mode for better fuel efficiency or inhibit idle stop mode to keep the compressor running for driver comfort. This clash can be resolved in two ways: 1 Hardware change and, 2 Software change Hardware change leads to increase in cost, validation effort and time.
Technical Paper

Reduction of Seat Back Vibrations in a Passenger Car- An Integrated CAE - Experimental Approach

2011-04-12
2011-01-0497
In the present automobile market, customers have put demand for smaller cars with better ride and comfort. For small diesel engine cars, where the comfort is known to be inferior to its gasoline siblings, the effect of engine excitation and road inputs has posed the problem of seat back vibrations. Low frequency vibrations are observed at irregular road inputs, which directly get transferred to the human body through the seat back resulting in fatigue and discomfort. This paper describes the use of testing and CAE in reducing the seat back vibrations. First step of the study includes the frequency response functions (FRF) of the seat frame and road data. The CAE model is validated with the test data and the problem areas are identified. The countermeasure design modifications in the seat frame structure are analyzed using CAE (Normal Mode Analysis). The feasible countermeasure action is road tested and clearly shows a reduction in the vibration levels coming on the seat back.
Technical Paper

Challenges of Hydraulic Engine Mount Development for NVH Refinement

2018-04-03
2018-01-0681
NVH refinement of passenger vehicle is essential to customer acceptance for premium or even mid-size segment passenger cars. Hydraulic engine mount is becoming common for these segments to reduce engine bounce, idle shake and noise transfer to passenger cabin. Modern layout of hydraulic mount with integrated engine-bracket and smaller size insulator has made it cost-effective to use due to reduction of cost gap from conventional elastomeric mounts. However the downsizing and complex internal structure may create some new types of noises in passenger cabin which are very difficult to identify in initial development stage. Main purpose of hydraulic mount is to provide high damping at low-frequency range (6~15 Hz) and to isolate noise transfer from combustion engine to passenger cabin within wide frequency range (15~600 Hz).This paper emphasizes on challenges and problems related to hydraulic mount development.
Technical Paper

Characterization of Structure-Borne Road/Tire Noise Inside a Passenger Car Cabin Using Path Based Analysis

2013-11-27
2013-01-2858
Road/Tire noise is an important product quality criterion for passenger cars which are driving customers to decide upon the selection of a vehicle. Reduced engine noise and improvement in road conditions has resulted into more road/tire noise problem as average vehicle speed has gone up. Excitations from road surface travelling through the tire/suspension to vehicle body (structure-borne path) and air-pumping noise caused by tread patterns (air-borne paths) are the main contributor to tire noise issue inside the vehicle cabin [1]. A lot of emphasis is put on the component level design as well as its compliance with vehicle structure to reduce the cabin noise. The objective of this work is to establish a methodology for evaluating structure-borne road/tire noise by evaluating the tire structural behavior and its interface with the vehicle body and its suspension system and identifying the contributing critical paths.
Technical Paper

Numerical Modeling of Critical Path Contributions for NVH Prediction of Vehicle

2013-11-27
2013-01-2802
For any new vehicle development, NVH target setting is crucial activity. Structural modification are to be done in early design phase to improve cabin comfort by identifying the sensitive paths and taking appropriate countermeasures for reduction of noise or vibrations transmission to cabin. A benchmark vehicle is taken to define the target areas for next model development. Numerical computations with suitably modified virtual model are carried out to accelerate the development cycle. Transfer path analysis (TPA) is an established technique for estimation and ranking of individual low-frequency noise or vibration contributions via the different structural transmission paths from point coupled powertrain or wheel-suspensions to the vehicle body [1]. TPA technique can also be used to define the improvement targets for future vehicles.
Technical Paper

Virtual Validation of Gear Shifting Lever Assembly by Impact Simulation and Correlation with Testing

2022-10-05
2022-28-0375
Government’s focus on road safety requirements is resulting in faster adoption of stringent automobile safety regulations in India. In addition, due to changing customer preference, automobile companies are also working to provide safer vehicles in the market. Due to the complexity and high cost of the vehicle safety testing, more focus is given to development of CAE simulation technologies to validate the design for meeting regulatory norms, reducing design cycle time and number of physical tests. Safety requirement in vehicle safety regulations is to minimize the impact transfer to the occupants in case of vehicle crash. During vehicle crash condition, there is possibility that driver head may hit the gear shift lever assembly (GSLA) knob as it falls in the hitting area with respect to driver seat reference point (SRP). There is a regulatory requirement for the maximum acceleration level that is to be experienced by the driver during impact to prevent serious head injury.
Technical Paper

Mitigation of Abnormal Injector Ticking Noise by Optimization of Hydraulic Operational Modes of Fuel System

2022-10-05
2022-28-0096
With the advent of stricter regulation for tail pipe emission and urge to reduce the carbon foot prints, the engine hardware has undergone through evolutionary changes over the years i.e., boosting, low viscosity engine oil, high pressure fuel injection, cooled EGR, friction reduction, downsizing etc. These technological changes have led to the challenge of increase in radiated noise level from the engine (source) due to increased number of auxiliary drives on engine i.e., Turbo charger, HP fuel pump along with faster combustion & harsher operating conditions. The fuel system is one such system which has become most intricate with operating pressure going above 2000bar in the fuel rail and capability of up to 10 fuel injection per combustion. These changes in hardware could result in abnormal noise generation during specific operating conditions which may result in customer annoyance inside vehicle cabin.
Technical Paper

Evaluation of Sound Radiation from Exhaust Muffler Shell-A Novel Experimental Approach

2013-03-25
2013-01-0116
Shorter product development cycles, densely packed engine compartments and intensified noise legislation has increased the need for accurate predictions of passenger cars Exhaust system noise at early design stages. The urgent focus on the increasing CO2 emissions and the efficiency of IC-engines as well as upcoming technologies might adversely affect the noise emission from an exhaust system, so it is becoming increasingly important to evaluate the sub system level noise emissions in an early design stage in order to predict and optimize the exhaust system performance. Engine performance and vehicle NVH characteristics are two important parameters on which the design of the exhaust system has major influence. The reduction of exhaust noise is a very important factor in controlling the exterior and interior noise levels of vehicles, particularly to reach future target values of the pass-by noise and sound engineering for the vehicle.
Technical Paper

Effect of Fabric Type and Construction on Automotive Seating Comfort

2013-04-08
2013-01-0654
The interface between human body and automotive seat contours is seat upholstery. Seating comfort has a functional correlation to the upholstery. Two seats having different upholstery will give different comfort perception. Even an ergonomically designed seat if fitted with poor quality fabric will subdue the seat comfort drastically. The effect of fabric comfort ranges from initial short term to long term comfort, driven by properties like wick-ability and factors like thermal stress. Beyond material characteristics, fabric fit also plays an important role. This paper analyses the effect of fabric parameters and construction on automotive seat comfort. A comprehensive comparative study is followed by systematic analysis and comfort improvement scope through upholstery. The research is to conclude potential of the seat fabric in enhancing the automotive seating comfort within stipulated constraints of fabric properties and cost.
Technical Paper

Impact of Different Types of Glazing on Thermal Comfort of Vehicle Occupants

2020-04-14
2020-01-1249
Due to intense peak summer temperatures and sunny summers in tropical countries like India etc., achieving the required thermal comfort of car occupants without compromising on fuel efficiency is becoming increasingly challenging. The major source of heat load on vehicle is Solar Load. Therefore, a study has been conducted to evaluate the heat load on vehicle cabin due to solar radiations and its impact on vehicle air-conditioning system performance with various combinations of door glasses and windscreen. The glasses used for this study are classified as green, dark green, dark gray, standard PVB (Polyvinyl Butyral) windscreen and PVB windscreen having infrared cut particles. For each glass, part level evaluation was done to find out the percentage transmittance of light of different wavelengths and heat flux through each glass.
Technical Paper

Optimization of Simulation Channels for Inverse FRF Calculation on 6-Axis Road Load Simulator: An Experimental Approach

2017-01-10
2017-26-0303
Nowadays, Road Load Simulators are used by automobile companies to reproduce the accurate and multi axial stresses in test parts to simulate the real loading conditions. The road conditions are simulated in lab by measuring the customer usage data by sensors like Wheel Force transducers, accelerometers, displacement sensors and strain gauges on the vehicle body and suspension parts. The acquired data is simulated in lab condition by generating ‘drive file’ using the response of the above mentioned sensors [2]. For generation of proper drive file, not only good FRF but ensuring stability of inverse FRF is also essential. Stability of the inverse FRF depends upon the simulation channels used. In this paper experimental approach has been applied for the optimization of the simulation channels to be used for simulation of normal Indian passenger car on 4 corners, 6-Axis Road Load Simulator. Time domain tests were performed to identify potential simulation channels.
Technical Paper

Design Optimization of Engine Mount De-Coupler for Cabin Noise Refinement in Passenger Vehicle

2019-01-09
2019-26-0199
Quieter cabins are indispensable in today’s evolving automobile industry. The effective isolation of vehicle noise and vibrations are essential to achieve the above. Since, low frequency powertrain induced NVH has been one of the major contributors affecting noise and vibration levels inside the passenger cabin. Thus, use of hydraulic mounts is a natural choice for all major OEMs. The objective of this study is to optimize the design of the hydraulic mount de-coupler unit, to reduce the abnormal noise felt inside the cabin. This condition was observed when the vehicle was driven at 20~30 km/h over undulated road surface, found very often in Indian drive conditions. Due to lack of accuracy and repeatability errors during NVH data acquisition in actual driving condition, the above road profile was captured and subsequently simulated in an acoustically treated BSR (Buzz, Squeak and Rattle) four poster simulator.
X