Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Examination of the Validity of Connections between MSILs and ASILs in the Functional Safety Standard for Motor Vehicles

2015-11-17
2015-32-0794
ISO 26262, a functional safety standard for motor vehicles, was published in November 2011. Although motorcycles are not included in the scope of application of the current edition of ISO 26262, it is expected that motorcycles will be included in the next revision. However, it is not appropriate to directly apply automotive safety integrity levels (ASILs) to motorcycles because the situation of usage in practice presumably differs between motorcycles and motor vehicles. In our previous study, we newly defined safety integrity levels for motorcycles (MSILs) and proposed that the levels of MSILs should correspond to levels one step lower than those of ASILs; however, we did not investigate the validity of their connections. Accordingly, in this research, we validated the connections. We defined the difference of levels of SILs between motorcycles and motor vehicles as the difference of target values of random hardware failure rates specified in ISO 26262-5.
Technical Paper

Evaluating Lane-Keeping-Assistance System for Motorcycles by Using Rider-Control Model

2008-09-09
2008-32-0056
This study seeks to design a lane-keeping controller for motorcycles and to evaluate it by simple computer simulation with a rider-control model. We applied the optimal control theory to the lane-keeping controller. The control effect is evaluated by using the rider-control model. By examining the computer simulation with the rider-in-the-loop system consisting of the motorcycle, the controller, and the rider-control model, good lane-following performance is achieved without interference between the control input and the rider's input. Additionally, the lane-following performance is improved by using a virtual-point regulator.
Technical Paper

One Approach to Definition of MSILs and Their Connections with ASILs

2014-11-11
2014-32-0016
ISO 26262 (Road vehicles - Functional safety), a functional safety standard for motor vehicles, was published in November 2011. In this standard, hazardous events associated with each item constituting a safety-related system are assessed according to three criteria, namely, Severity, Exposure, and Controllability, thereby determining ASILs (Automotive Safety Integrity Levels) representing safety levels for motor vehicles. Although motorcycles are not included in the scope of application of the current edition of ISO 26262, it is expected that motorcycles will be included in the next revision. However, it is not appropriate to directly apply ASILs to motorcycles. In the first place, the situation of usage in practice presumably differs between motorcycles and motor vehicles. Accordingly, in this research, we attempted to newly define Motorcycle Safety Integrity Levels (MSILs).
Technical Paper

Study on Weave Behavior Simulation of Motorcycles Considering Vibration Characteristics of Whole Body of Rider

2018-10-30
2018-32-0052
In motorcycles, the mass difference between a vehicle and a rider is small and motions of a rider impose a great influence on the vehicle behaviors as a consequence. Therefore, dynamic properties of motorcycles should be evaluated not merely dealing with a vehicle but considering with a man-machine system. In the studies of a simulation for vehicle dynamics, various types of rider models have been proposed and it has already been reported that rider motions have a significant influence on the dynamic properties. However, the mechanism of the interaction between a rider and a vehicle has not been clarified yet. In our study, we focused on weave motion and constructed a full vehicle simulation model that can reflect the influences of the movements of the rider’s upper body and lower body. To construct the rider model, we first measured the vibrational characteristics of a human body using a vibration test bench.
Technical Paper

Effectiveness Verification of Practice Using the Simple Motorcycle Simulator

2005-10-12
2005-32-0080
The educational systems for driving vehicle are recently progressing every year like aircraft simulator. To know the learning process of training are very important for designing total education system. Therefore this research considers the methodologies of measuring human learning process when the beginner rider practicing by using motorcycle simulator. Here, a motorcycle needs the proper manipulating practice in the event of first riding because the manipulation use both hands and feet with keeping balance. For this reason in this paper it is considered the methodologies of measuring rider learning effectiveness by recording rider behavior and motorcycle movement.
X