Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Analytical Method for Console Lid Latch Squeak and Rattle Risk Assessment and Validation

2022-03-29
2022-01-0314
Squeak and Rattle (S&R) noise in automotive vehicle components is a direct measure of vehicle build quality. With the recent advances in electric propulsion technology the cabin interior has become even more quieter, but S&R remains one of the main noise issues inside the cabin. Consumer surveys such as by J D Power shows that instrument panel, floor console and glove box latch mechanism are some of the most prominent sources of vehicle interior noise. The commonly used design for console lid latch consists of latch pawl preloaded against the console bin in closed condition. The goal of design is to optimize the preload such that the latch remains in contact with the bin under all operating conditions. But inadequate design, poor manufacturing quality control and material degradation causes the loss of preload. Hence, S&R noise emerges due to friction or impact between the parts which induces undesirable vibration and noise.
Technical Paper

Numerical Modeling of Electro-Thermal Behaviour of a Typical Lithium-Ion Cell and Pack Level Using NewmanP2D Approach

2022-11-09
2022-28-0409
Numerical simulation of lithium-ion batteries (LIB) has become extremely vital in the understanding of thermal behaviour of LIBs to develop active and passive battery thermal management systems. The LIB is popular in consumer electronics. Beyond consumer electronics, the LIB is also growing in popularity for the automotive applications such as hybrid electric vehicles (HEVs) and battery electric vehicles (BEVs) due to its high energy density, high voltage, and low self-discharge rate. High amount of heat generally gets developed during charge and discharge of LIB based on the c-rate at which it is being discharged or charged. Hence, there should be a mechanism to understand the thermal behaviour of these cells. Thus, in this paper a numerical procedure has been developed to model electrochemical-thermal behaviour of commercially available 21700 Li-ion cells. NewmanP2D approach is used to arrive at electrochemistry performance of Li-ion cell and pack.
Technical Paper

Cycle Aging of a Commercial Lithium-Ion Cell – A Numerical Approach

2023-09-14
2023-28-0027
With advancement and increase in usage of Li-ion batteries in sectors such as electronic equipment’s, Electric Vehicles etc battery lifetime is critical for estimation of product life. It is well known that temperature and voltage strongly influence the degradation of lithium-ion batteries and that it depends on the chemical composition and structure of the positive and negative electrodes. Lithium batteries are continuously subjected to various load cycles and ambient temperatures depending on application of battery. Thus, in many applications Cycle aging could be the main contributor or factor for battery degradation, thus reduction in life of product. Thus, there is strong need for researchers and engineers to help improve life of cells or batteries being used in electric vehicles. In this present work, cycle aging of commercial 18650 cell is studied at ambient temperature. Experimental data shows that about nearly 20 % cell capacity degrades at ambient temperature.
X