Refine Your Search

Topic

Author

Search Results

Journal Article

A Primer on Building a Hardware in the Loop Simulation and Validation for a 6X4 Tractor Trailer Model

2014-04-01
2014-01-0118
This research was to model a 6×4 tractor-trailer rig using TruckSim and simulate severe braking maneuvers with hardware in the loop and software in the loop simulations. For the hardware in the loop simulation (HIL), the tractor model was integrated with a 4s4m anti-lock braking system (ABS) and straight line braking tests were conducted. In developing the model, over 100 vehicle parameters were acquired from a real production tractor and entered into TruckSim. For the HIL simulation, the hardware consisted of a 4s4m ABS braking system with six brake chambers, four modulators, a treadle and an electronic control unit (ECU). A dSPACE simulator was used as the “interface” between the TruckSim computer model and the hardware.
Technical Paper

High-Fidelity Modeling and Prediction of Hood Buffeting of Trailing Automobiles

2020-03-10
2020-01-5038
The importance of fluid-structure interaction (FSI) is of increasing concern in automotive design criteria as automobile hoods become lighter and thinner. This work focuses on computational simulation and analysis of automobile hoods under unsteady aerodynamic loads encountered at typical highway conditions while trailing another vehicle. These driving conditions can cause significant hood vibrations due to the unsteady loads caused by the vortex shedding from the leading vehicle. The study is carried out using coupled computational fluid dynamics (CFD) and computational structural dynamics (CSD) codes. The main goal of this work is to characterize the importance of fluid modeling fidelity to hood buffeting response by comparing fluid and structural responses using both Reynolds-Averaged Navier-Stokes (RANS) and detached eddy simulation (DES) approaches. Results are presented for a sedan trailing another sedan.
Journal Article

HMMWV Axle Testing Methodology to Determine Efficiency Improvements with Superfinished Hypoids

2013-04-08
2013-01-0605
A dynamometer test methodology was developed for evaluation of HMMWV axle efficiency with hypoid gearsets, comparing those having various degrees of superfinish versus new production axles as well as used axles removed at depot maintenance. To ensure real-world applicability, a HMMWV variant vehicle model was created and simulated over a peacetime vehicle duty cycle, which was developed to represent a mission scenario. In addition, tractive effort calculations were then used to determine the maximum input torques. The drive cycle developed above was modified into two different profiles having varying degrees of torque variability to determine if the degree of variability would have a significant influence on efficiency in the transient dynamometer tests. Additionally, steady state efficiency performance is measured at four input pinion speeds from 700-2500 rpm, five input torques from 50 - 400 N⋅m, and two sump temperatures, 80°C and 110°C.
Journal Article

Validation of Real Time Hardware in the Loop Simulation for ESC Testing with a 6×4 Tractor and Trailer Models

2013-04-08
2013-01-0692
The tractor trailer models discussed in this paper were for a real-time hardware-in-the-loop (HIL) simulation to test heavy truck electronic stability control (ESC) systems [1]. The accuracy of the simulation results relies on the fidelity and accuracy of the vehicle parameters used. However in this case where hardware components are part of the simulation, their accuracy also affects the proper working of the simulation and ESC unit. Hence both the software and hardware components have to be validated. The validation process discussed in this paper is divided into two sections. The first section deals with the validation of the TruckSim vehicle model, where experimental data is compared with simulation results from TruckSim. Once the vehicle models are validated, they are incorporated in the HIL simulation and the second section discusses the validation of the whole HIL system with ESC.
Technical Paper

Process Simulation to Improve Quality and Increase Productivity in Rolling, Ring Rolling and Forging

1991-02-01
910142
The practical and proven use of computers in forming technology include: CAD/CAM for die making; transfer of geometric data from the customer's CAD/CAM system to that of the supplier and vice versa; application of artificial intelligence and expert systems for part and process design; simulation of metal flow to eliminate forging defects; prediction and optimization of process variables; and analysis of stresses in dies as well as prevention of premature die failure. Intelligent use of this information can lead to significant gains in product quality and productivity. This paper presents three examples of application of process simulation to forming : rolling, ring rolling and forging.
Technical Paper

The Ohio State University Automated Highway System Demonstration Vehicle

1998-02-23
980855
The Ohio State University Center for Intelligent Transportation Research (CITR) has developed three automated vehicles demonstrating advanced cruise control, automated steering control for lane keeping, and autonomous behavior including automated stopping and lane changes in reaction to other vehicles. Various sensors were used, including a radar reflective stripe system and a vision based system for lane position sensing, a radar system and a scanning laser rangefinding system for the detection of objects ahead of the vehicle, and various supporting sensors including side looking radars and an angular rate gyroscope. These vehicles were demonstrated at the National Automated Highway System Consortium (NAHSC) 1997 Technical Feasibility Demonstration in a scenario involving mixed autonomous and manually driven vehicles. This paper describes the demonstration, the vehicle sensing, control, and computational hardware, and the vehicle control software.
Technical Paper

Dynamic Modeling and Characterization of Transmission Response for Controller Design

1998-02-23
981094
Electronic closed loop control of automatic transmission functions can potentially benefit from the use of quantitative models of transmission response in a form compatible with controller design procedures. Transmission dynamic response during gear shifts of a discrete-ratio transmission is nonlinear. Procedures for developing linearized dynamic models are applied to the simulation of the nonlinear model of a representative power train during the inertia phase of a shift. The frequency responses for the resulting linear models are examined, and their implications for controller design are noted.
Technical Paper

Refinements of a Heavy Truck ABS Model

2007-04-16
2007-01-0839
In 2004, a model of a 6s6m ABS controller was developed in order to support NHTSA's efforts in the study of heavy truck braking performance. This model was developed using Simulink and interfaced with TruckSim, a vehicle dynamics software package, in order to create an accurate braking simulation of a 6×4 Peterbilt straight truck. For this study, the vehicle model braking dynamics were improved and the ABS controller model was refined. Also, the controller was made adaptable to ABS configurations other than 6s6m, such as 4s4m and 4s3m. Controller models were finally validated to experimental data from the Peterbilt truck, gathered at NHTSA's Vehicle Research and Test Center (VRTC).
Technical Paper

Evaluation of a Shock Model for Vehicle Simulation

2007-04-16
2007-01-0845
This paper describes the development of a more accurate shock absorber model in order to obtain better vehicle simulation results. Previous shock models used a single spline to represent shock force versus shock velocity curves. These models produced errors in vehicle simulations because the damper characteristics are better represented by the application of a hysteresis loop in the model. Thus, a new damper model that includes a hysteresis loop is developed using Matlab Simulink. The damper characteristics for the new model were extracted from measurements made on a shock dynamometer. The new model better represents experimental shock data. The new shock model is incorporated into two different lumped-parameter vehicle models: one is a three degree-of-freedom vehicle handling model and the other is a seven degree-of-freedom vehicle ride model. The new damper model is compared with the previous model for different shock mileages (different degrees of wear).
Technical Paper

Development and Implementation of a Path-Following Algorithm for an Autonomous Vehicle

2007-04-16
2007-01-0815
This paper describes the development and implementation of an accurate and repeatable path-following algorithm focused ultimately on vehicle testing. A compact, lightweight, and portable hardware package allows easy installation and negligible impact on the vehicle mass, even for the smallest automobile. Innovative features include the ability to generate a smooth, evenly-spaced path vector regardless the quality of the given path. The algorithm proposed in this work is suitable for testing in a controlled environment. The system was evaluated in simulation and performed well in road tests at low speeds.
Technical Paper

Parameter Determination and Vehicle Dynamics Modeling for The National Advanced Driving Simulator of the 2006 BMW 330i

2007-04-16
2007-01-0818
The paper discusses the development of a model for the 2006 BMW 330i for the National Advanced Driving Simulator's (NADS) vehicle dynamics simulation, NADSdyna. The front and rear suspensions are independent strut and link type suspensions modeled using recursive rigid-body dynamics formulations. The suspension springs and shock absorbers are modeled as force elements. The paper includes parameters for front and rear semi-empirical tire models used with NADSdyna. Longitudinal and lateral tire force plots are also included. The NADSdyna model provides state-of-the-art high-fidelity handling dynamics for real-time hardware-in-the-loop simulation. The realism of a particular model depends heavily on how the parameters are obtained from the actual physical system. Complex models do not guarantee high fidelity if the parameters used were not properly measured. Methodologies for determining the parameters are detailed in this paper.
Technical Paper

Correlation of a CAE Hood Deflection Prediction Method

2008-04-14
2008-01-0098
As we continue to create ever-lighter road vehicles, the challenge of balancing weight reduction and structural performance also continues. One of the key parts this occurs on is the hood, where lighter materials (e.g. aluminum) have been used. However, the aerodynamic loads, such as hood lift, are essentially unchanged and are driven by the front fascia and front grille size and styling shape. This paper outlines a combination CFD/FEA prediction method for hood deflection performance at high speeds, by using the surface pressures as boundary conditions for a FEA linear static deflection analysis. Additionally, custom post-processing methods were developed to enhance flow analysis and understanding. This enabled the modification of existing test methods to further improve accuracy to real world conditions. The application of these analytical methods and their correlation with experimental results are discussed in this paper.
Technical Paper

Design and Conduct of Precision Planetary Gear Vibration Experiments

2009-05-19
2009-01-2071
Despite a large body of analytical work characterizing the dynamic motion of planetary gears, supporting experimental data is limited. Experimental results are needed to support computer modeling and offer practical optimization guidelines to gear designers. This paper presents the design and implementation of a test facility and precision test fixtures for accurate measurement of planetary gear vibration at operating conditions. Acceleration measurements are made on all planetary bodies under controlled torque/speed conditions. Custom, high-precision test fixtures accommodate instrumentation, ensure accurate alignment, help isolate gear dynamics, and allow for variability in future testing. Results are compared with finite element and lumped parameter models.
Technical Paper

Application of Model-Based Design Techniques for the Control Development and Optimization of a Hybrid-Electric Vehicle

2009-04-20
2009-01-0143
Model-based design is a collection of practices in which a system model is at the center of the development process, from requirements definition and system design to implementation and testing. This approach provides a number of benefits such as reducing development time and cost, improving product quality, and generating a more reliable final product through the use of computer models for system verification and testing. Model-based design is particularly useful in automotive control applications where ease of calibration and reliability are critical parameters. A novel application of the model-based design approach is demonstrated by The Ohio State University (OSU) student team as part of the Challenge X advanced vehicle development competition. In 2008, the team participated in the final year of the competition with a highly refined hybrid-electric vehicle (HEV) that uses a through-the-road parallel architecture.
Technical Paper

Vehicle Dynamics Modeling and Validation of the 2003 Ford Expedition with ESC using CarSim

2009-04-20
2009-01-0452
The paper discusses the development of a vehicle dynamics model and model validation of the 2003 Ford Expedition in CarSim. The accuracy of results obtained from simulations depends on the realism of the model which in turn depends on the measured data used to define the model parameters. The paper describes the tests used to measure the vehicle data and also gives a detailed account of the methodology used to determine parameters for the CarSim Ford Expedition model. The vehicle model was validated by comparing simulation results with experimental testing. Bounce and Roll tests in CarSim were used to validate the suspension and steering kinematics and compliances. Field test data of the Sine with Dwell maneuver was used for the vehicle model validation. The paper also discusses the development of a functional electronic stability control system and its effect on vehicle handling response in the Sine with Dwell maneuver.
Technical Paper

Characterization of Vehicle Occupant Compartment Material Properties Using MADYMO: Methodology and Validation

2009-06-09
2009-01-2260
During a motor-vehicle collision, an occupant may interact with a variety of interior structures. The material properties and construction of these structures can directly affect the occupant's kinetic response. Simulation tools such as MADYMO (Mathematical Dynamical Models) can be used to estimate the forces imparted to an occupant for injury mechanism and causation evaluation relative to a particular event. Depending on the impact event and the specific injury mechanism being evaluated, the selection of proper material characteristics can be quite important. A comprehensive literature review of MADYMO studies illustrates the prevalent use of generic material characteristics and the need for improved property estimation and implementation methods.
Technical Paper

Closed Loop Steering System Model for the National Advanced Driving Simulator

2004-03-08
2004-01-1072
This paper presents the details of the model for the physical steering system used on the National Advanced Driving Simulator. The system is basically a hardware-in-the-loop (steering feedback motor and controls) steering system coupled with the core vehicle dynamics of the simulator. The system's torque control uses cascaded position and velocity feedback and is controlled to provide steering feedback with variable stiffness and dynamic properties. The reference model, which calculates the desired value of the torque, is made of power steering torque, damping function torque, torque from tires, locking limit torque, and driver input torque. The model also provides a unique steering dead-band function that is important for on-center feel. A Simulink model of the hardware/software is presented and analysis of the simulator steering system is provided.
Technical Paper

Effect of Viscoelastic Patch Damping on Casing Cover Dynamics

2001-04-30
2001-01-1463
Many automotive components and sub-systems require viscoelastic damping treatments to control noise and vibration characteristics. To aid the dynamic design process, new approaches are needed for modeling of partial damping treatments and characterization of the overall dynamic behavior. The analytical component of the design process is illustrated via the transmission casing cover, along with supporting experiments. First, the vibration response of production casing plates is examined, with and without the constrained layer treatment. A modified flat plate is employed along with a generic housing that provides the realistic boundary conditions for subsequent work. A simplified analytical damping model for constrained viscoelastic layer damping is suggested based on assumed modal functions. Using the analytical model, design guidelines in terms of optimal patch shapes and locations are suggested.
Technical Paper

Examination of High Frequency Characterization Methods for Mounts

2001-04-30
2001-01-1444
The knowledge of frequency-dependent dynamic stiffnesses of mounts, in axial and flexural motions, is needed to determine the behavior of many automotive sub-systems. Consequently, characterization and modeling of vibration isolators is increasingly becoming more important in mid and high frequency regimes where very few methods are known to exist. This paper critically examines some of the approximate identification methods that have been proposed in the literature. Then we present a new experimental identification method that yields frequency-dependent multi-dimensional dynamic stiffnesses of an isolator. The scope is however limited to a linear time-invariant system and our analysis is restricted to the frequency domain. The new characterization method uses two inertial elements at both ends of an isolator and free boundary conditions are maintained during testing.
Technical Paper

A Study of Jackknife Stability of Class VIII Vehicles with Multiple Trailers with ABS Disc/Drum Brakes

2004-03-08
2004-01-1741
This study investigated the jackknife stability of Class VIII double tractor-trailer combination vehicles that had mixed braking configurations between the tractor and trailers and dolly (e.g. ECBS disc brakes on the tractor and pneumatic drum brakes on the trailers and dolly). Brake-in-turn maneuvers were performed with varying vehicle loads and surface conditions. Conditions with ABS ON for the entire vehicle (and select-high control algorithm on the trailers and dolly) found that instabilities (i.e. lane excursions and/or jackknifes) were exhibited under conditions when the surface friction coefficient was 0.3. It was demonstrated that these instabilities could be avoided while utilizing a select-low control algorithm on the trailers and dolly. Simulation results with the ABS OFF for the tractor showed that a tractor equipped with disc brakes had greater jackknife stability.
X