Refine Your Search

Topic

Search Results

Journal Article

The Effect of Cetane Improvers and Biodiesel on Diesel Particulate Matter Size

2011-04-12
2011-01-0330
Heavy-duty diesel engines (HDDE), because of their widespread use and reputation of expelling excessive soot, have frequently been held responsible for excessive amounts of overall environmental particulate matter (PM). PM is a considerable contributor to air pollution, and a subject of primary concern to health and regulatory agencies worldwide. The U.S. Environmental Protection Agency (EPA) has provided PM emissions regulations and standards of measurement techniques since the 1980's. PM standards set forth by the EPA for HDDEs are based only on total mass, instead of size and/or concentration. The European Union adopted a particle number emission limit, and it may influence the U.S. EPA to adopt particle number or size limits in the future. The purpose of this research was to study the effects biodiesel blended fuel and cetane improvers have on particle size and number.
Journal Article

Control and Testing of a 2-Mode Front-Wheel-Drive Hybrid-Electric Vehicle

2012-04-16
2012-01-1192
The new General Motors 2-mode hybrid transmission for front-wheel-drive vehicles has been incorporated into a 2009 Saturn Vue by the West Virginia University EcoCAR team. The 2-mode hybrid transmission can operate in either one of two electrically variable transmission modes or four fixed gear modes although only the electrically variable modes were explored in this paper. Other major power train components include a GM 1.3L SDE turbo diesel engine fueled with B20 biodiesel and an A123 Systems 12.9 kWh lithium-ion battery system. Two additional vehicle controllers were integrated for tailpipe emission control, CAN message integration, and power train hybridization control. Control laws for producing maximum fuel efficiency were implemented and include such features as engine auto-stop, regenerative braking and optimized engine operation. The engine operating range is confined to a high efficiency area that improves the overall combined engine and electric motor efficiency.
Technical Paper

Defining the Hybrid Drive System for the WVU ClearVue Crossover Sport Utility Vehicle

2010-04-12
2010-01-0841
West Virginia University (WVU) is a participant in EcoCAR - The NeXt Challenge, an Advanced Vehicle Technology Competition sponsored by the U.S. Department of Energy, and General Motors Corporation. During the first year of the competition, the goal of the WVU EcoEvolution Team was to design a novel hybrid-electric powertrain for a 2009 Saturn Vue to increase pump-to-wheels fuel economy, reduce criteria tailpipe emissions and well-to-wheels greenhouse gas emissions (GHG) while maintaining or improving performance and utility. To this end, WVU designed a 2-Mode split-parallel diesel-electric hybrid system. Key elements of the hybrid powertrain include a General Motors 1.3L SDE Turbo Diesel engine, a General Motors Corporation 2-Mode electrically variable transmission (EVT) and an A123 Systems Lithium-Ion battery system. The engine will be fueled on a blend of 20% soy-derived biodiesel and 80% petroleum-derived ultra-low sulfur diesel fuel (B20).
Technical Paper

Mutagenic Potential of Particulate Matter from Diesel Engine Operation on Fischer-Tropsch Fuel as a Function of Engine Operating Conditions and Particle Size

2002-05-06
2002-01-1699
Further growth of diesel engines in the light-duty and heavy-duty vehicular market is closely linked to the potential health risks of diesel exhaust. The California Air Resources Board and the Office of Environmental Health Hazard Assessment have identified diesel exhaust as a toxic air contaminant. The International Agency for Research on Cancer concluded that diesel particulate is a probable human carcinogen [1]. Cleaner burning liquid fuels, such as those derived from natural gas via the Fischer-Tropsch (FT) process, offer a potentially economically viable alternative to standard diesel fuel while providing reduced particulate emissions. Further understanding of FT operation may be realized by investigating the differences in toxicity and potential health effects between particulate matter(PM) derived from FT fuel and that derived from standard Federal diesel No. 2 (DF).
Technical Paper

Combustion and Emission Characteristics of Fischer-Tropsch and Standard Diesel Fuel in a Single-Cylinder Diesel Engine

2001-09-24
2001-01-3517
The emissions reduction of Fischer-Tropsch (FT) diesel fuel has been demonstrated in several recent publications in both laboratory engine testing and in-use vehicle testing. Reduced emission levels have been attributed to several chemical and physical characteristics of the FT fuels including reduced density, ultra-low sulfur levels, low aromatic content and high cetane rating. Some of the effects of these attributes on the combustion characteristics in diesel engines have only recently been documented. In this study, a Ricardo Proteous, single-cylinder, 4-stroke DI engine is instrumented for in-cylinder pressure measurements. The engine was run at several steady engine states at multiple timing conditions using both federal low sulfur and natural gas derived FT fuels. The emissions and performance data for each fuel at each steady state operating conditions were compared.
Technical Paper

Initial Investigations of a Novel Engine Concept for Use with a Wide Range of Fuel Types

1992-02-01
920057
The recent oil crisis has once again emphasized the need to develop both fuel efficient engines and alternately fueled engines, particularly for automotive applications. Engines which burn coal or coal pyrolysis products are attractive, but ignition delay and metal erosion problems continue to limit high speed operation of such engines. Further, the throttled spark ignition engine often used with methanol and natural gas does not prove an efficient or tolerant device for the combustion of a wide range of fuel. Therefore, an novel approach must be taken in order to achieve the efficient and flexible operation of such an engine. A novel design of a fuel tolerant engine suitable for burning coal fuels separates the combustion from the piston in order to have more careful flame control and to exclude the particulate matter from the engine's piston rings.
Technical Paper

Characteristics of Exhaust Emissions from a Heavy-Duty Diesel Engine Retrofitted to Operate in Methane/Diesel Dual-Fuel Mode

2013-09-08
2013-24-0181
The need for a cleaner and less expensive alternative energy source to conventional petroleum fuels for powering the transportation sector has gained increasing attention during the past decade. Special attention has been directed towards natural gas (NG) which has proven to be a viable option due to its clean-burning properties, reduced cost and abundant availability, and therefore, lead to a steady increase in the worldwide vehicle population operated with NG. The heavy-duty vehicle sector has seen the introduction of natural gas first in larger, locally operated fleets, such as transit buses or refuse-haulers. However, with increasing expansion of the NG distribution network more drayage and long-haul fleets are beginning to adopt natural gas as a fuel.
Technical Paper

Hydrocarbon Speciation of a Lean Burn Spark Ignited Engine

1997-10-01
972971
A research program at West Virginia University sought to identify and quantify the individual hydrocarbon species present in alternative fuel exhaust. Compressed natural gas (CNG) has been one of the most widely researched fuels proposed to replace liquid petroleum fuels. Regulated CNG non-methane hydrocarbon emissions are often lower than hydrocarbon emissions from conventional liquid fuels because of the absence of heavier hydrocarbons in the fuel. Reducing NOx and non-methane organic gas (NMOG) emission levels reduces the ozone forming potential (OFP) of the exhaust gases. A Hercules GTA 3.7 liter medium duty CNG engine was operated at seven load and speed set points using local supply CNG gas. The engine was operated at several rated, intermediate and idle speed set points. The engine was operated while the air/fuel ratio value was varied.
Technical Paper

Basic Design of the Rand Cam Engine

1993-03-01
930062
The Rand Cam engine is a novel design which avoids the use of pistons in favor of a cavity of varying size and shape. A set of vanes protrudes from a rotor into a circular trough in a stator. The vanes seal to the walls and base of the trough, which is of varying depth, and progress around the trough with rotation of the rotor. These vanes therefore pass through the rotor and are constrained to move parallel to the rotational axis. Intake and exhaust processes occur through ports in the stator wall which are revealed by the passing vanes. Advantages of the basic design include an absence of valves, reduction in reciprocating masses, presence of an integral flywheel in the rotor and strong fluid movement akin a swirl induced by the relative velocity between the rotor and stator.
Technical Paper

Solid State Electrochemical Cell for NOx Reduction

1992-08-03
929418
An electrochemical cell is presented which reduces NOx emissions from a vehicle fueled by dedicated natural gas. The cell is comprised of a honeycomb shaped ceramic which is chemically coated with an electrically conductive material in two distinct regions which serve as electrodes such that, with the application of a voltage potential, a cathode and anode are formed. As the exhaust gas flows through the inner channels of the cell, the electrochemical reduction of NOx at the cathode yields nitrogen gas and oxide ions. The nitrogen continues to flow through the cell while the oxide ions dissolve in the solid electrolyte. At the anodic zone, oxide ions are converted to oxygen gas. The pressure drop across the cell was experimentally measured to insure that the back pressure created by the cell does not create a significant reduction in the efficiency of the engine.
Technical Paper

Performance of a High Speed Engine with Dual Fuel Capability

1994-03-01
940517
Concern over dwindling oil supplies has led to the adoption of alternate fuels to power fleet vehicles. However, during the interim period when alternate fuel supply stations are few and far between, dual fuel engines prove a necessity. In the light duty arena, these engines are typically gasoline engines modified to accommodate compressed natural gas (CNG) as an alternate fuel, but they are seldom optimized with both fuels in mind. A Saturn 1.9 liter 4 cylinder dual overhead cam engine was selected as a base for developing an optimized gasoline/CNG powerplant. Baseline data on power and steady state emissions (CO2, CO, NOx, HC) were found using the standard Saturn controller. In addition to monitoring standard sensor measurements, real-time pressure traces were taken for up to 256 cycles using a modified head with embedded PCB piezoelectric pressure transducers.
Technical Paper

Turbocharging a Bi-Fuel Engine for Performance Equivalent to Gasoline

1994-10-01
942003
A bi-fuel engine capable of operating either on compressed natural gas (CNG) or gasoline is being developed for the transition to alternative fuel usage. A Saturn 1.9 liter 4-cylinder engine was selected as a base powerplant. A control system that allows closed-loop optimization of both fuel delivery and spark timing was developed. Stock performance and emissions of the engine, as well as performance and emissions with the new controller on gasoline and CNG, have been documented. CNG operation in an engine designed for gasoline results in power loss because of the lower volumetric efficiency with gaseous fuel use, yet such an engine does not take advantage of the higher knock resistance of CNG. It is the goal of this research to use the knock resistance of CNG to recover the associated power loss. The two methods considered for this include turbocharging with a variable boost wastegate and raising the compression ratio while employing variable valve timing.
Technical Paper

A Controller for a Spark Ignition Engine with Bi-Fuel Capability

1994-10-01
942004
A bi-fuel engine with the ability to run optimally on both compressed natural gas (CNG) and gasoline is being developed. Such bi-fuel automotive engines are necessary to bridge the gap between gasoline and natural gas as an alternative fuel while natural gas fueling stations are not yet common enough to make a dedicated natural gas vehicle practical. As an example of modern progressive engine design, a Saturn 1.9 liter 4-cylinder dual overhead cam (DOHC) engine has been selected as a base powerplant for this development. Many previous natural gas conversions have made compromises in engine control strategies, including mapped open-loop methods, or resorting to translating the signals to or from the original controller. The engine control system described here, however, employs adaptive closed-loop control, optimizing fuel delivery and spark timing for both fuels.
Technical Paper

Use of the West Virginia University Truck Test Cycle to Evaluate Emissions from Class 8 Trucks

1995-02-01
951016
Emissions from light duty vehicles have traditionally been measured using a chassis dynamometer, while heavy duty testing has been based on engine dynamometers. However, the need for in-use vehicle emissions data has led to the development of two transportable heavy duty chassis dynamometers capable of testing buses and heavy trucks. A test cycle has been developed for Class 8 trucks, which typically have unsyncronized transmissions. This test cycle has five peaks, each consisting of an acceleration, cruise period, and deceleration, with speeds and acceleration requirements that can be met by virtually all vehicles in common service. Termed the “WVU 5 peak truck test”, this 8 km (5 mile) cycle has been used to evaluate the emissions from diesel and ethanol powered over-the-road tractors and from diesel and ethanol powered snow plows, all with Detroit Diesel 6V92 engines.
Technical Paper

The Design of a Bi-Fuel Engine Which Avoids the Penalties Associated with Natural Gas Operation

1995-02-01
950679
An alternative fuel that has demonstrated considerable potential in reducing emissions and crude oil dependence is compressed natural gas (CNG). A dedicated CNG vehicle suffers from the lack of an adequate number of fueling stations and the poor range limited by CNG storage technology. A vehicle capable of operating on either gasoline or natural gas allows alternative fuel usage without sacrificing vehicle range and mobility. Although many such bi-fuel vehicles are in existence, historically they have employed older engine designs and made compromises in engine control parameters that can degrade performance relative to gasoline and increase emissions. A modern production engine, a 1992 Saturn 1.9 liter 16 valve powerplant, is being optimized for operation on each fuel to realize the full potential of CNG in a bi-fuel system. CNG operation in an engine designed for gasoline typically suffers from reduced power, due in part to displacement of air by gaseous fuel.
Technical Paper

Effect of Fuel Composition on the Operation of a Lean Burn Natural Gas Engine

1995-10-01
952560
With the implementation of a closed loop fuel control system, operation of lean-burn natural gas engines can be optimized in terms of reducing emissions while maximizing efficiency. Such a system would compensate for variations in fuel composition, but also would correct for variations in volumetric efficiency due to immediate engine history and long-term engine component wear. Present day engine controllers perform well when they are operated with the same gas composition for which they were calibrated, but because fuel composition varies geographically as well as seasonally, some method of compensation is required. A closed loop control system on a medium-duty lean-burn engine will enhance performance by maintaining the desired air-fuel ratio to eliminate any unwanted rich or lean excursions (relative to the desired air-fuel ratio) that produce excess engine-out emissions. Such a system can also guard against internal engine damage due to overheating and/or engine knock.
Technical Paper

Ideal Computer Analysis of a Novel Engine Concept

1996-02-01
960080
A novel engine concept, currently under study, addresses many of the problems commonly associated with conventional internal combustion engines. In its simplest form the novel engine consists of a single crankshaft operating both a piston compressor and a piston expander which are connected by a continuous flame combustion chamber. One might regard this as a Brayton piston engine which is similar to a previous engine investigated by Warren. Also, due to the use of piston cylinders as the compression and expansion devices, this engine varies little mechanically from current engine technology thus allowing for easy implementation. The main improvement from conventional engine design is that the expansion cylinder can have a larger displacement than that of the compression cylinder. This allows more power to be extracted by lowering the loss due to blowdown and this will increase the thermal efficiency.
Technical Paper

The Stiller-Smith Engine-The Dewelopment of a New Environment for High-Tech Materials

1987-01-20
870721
New high-tech materials which are anticipated to revolutionize the internal combustion engine are being created everyday. However, their actual utilization in existing engines has encountered numerous stumbling blocks. High piston sidewall forces and thermal stresses are some of the problems of primary concern. The Stiller-Smith Engine should provide an environment more conducive to the use of some of these materials. Absent from the Stiller-Smith Engine is a crankshaft, and thus a very different motion is observed. Since all parts in the Stiller-Smith Engine move in either linear or rotary fashion it is simple to balance. Additionally the use of linear connecting rod bearings changes the location of the sidewall forces thus providing an isolated combustion chamber more tolerant to brittle materials and potential adiabatic designs. Presented herein is the development of this new engine environment, from conceptualization to an outline of present and future research.
Technical Paper

Thermodynamic implications of the Stiller-Smith Mechanism

1987-02-01
870615
The Stiller-Smith mechanism is a new mechanism for the translation of linear motion into rotary motion, and has been considered as an alternative to the conventional slider-crank mechanism in the design of internal combustion engines and piston compressors. Piston motion differs between the two mechanisms, being perfectly sinusoidal for the Stiller-Smith case. Plots of dimensionless volume and volume rate-change are presented for one engine cycle. It is argued that the different motion is important when considering rate-based processes such as heat transfer to a cylinder wall and chemical kinetics during combustion. This paper also addresses the fact that a Stiller-Smith engine will be easier to configure for adiabatic operation, with many attendant benefits.
Technical Paper

Interim Results from Alternative Fuel Truck Evaluation Project

1999-05-03
1999-01-1505
The objective of this project, which is supported by the U.S. Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL), is to provide a comprehensive comparison of heavy-duty trucks operating on alternative fuels and diesel fuel. Data collection from up to eight sites is planned. Currently, the project has four sites: Raley's in Sacramento, CA (Kenworth, Cummins L10-300G, liquefied natural gas - LNG); Pima Gro Systems, Inc. in Fontana, CA (White/GMC, Caterpillar 3176B Dual-Fuel, compressed natural gas - CNG); Waste Management in Washington, PA (Mack, Mack E7G, LNG); and United Parcel Service in Hartford, CT (Freightliner Custom Chassis, Cummins B5.9G, CNG). This paper summarizes current data collection and evaluation results from this project.
X