Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Chassis Dynamometer Evaluation of On-board Exhaust Emission Measurement System Performance in SI Car under Transient Operating Conditions

2008-06-23
2008-01-1826
A commercial on-board exhaust emissions measurement system, the Horiba OBS-1300, was evaluated in a series of chassis dynamometer test trails. A EURO 1 (petrol) SI passenger car, operated under normal and rich combustion conditions, and a combination of static and transient sampling provided a wide range of measurement conditions for the evaluation exercise. The chassis dynamometer facility incorporated an ‘industry standard’ measurement system comprising MEXA-7400 gas analyzer and CVS bag sampling system which were used as ‘benchmarks’ for the evaluation of both OBS-1300 component (exhaust flow meter and species analyzer) measurements and ‘daughter’ emission measurements for regulated gas-phase species (CO, CO2, HC and NOx). Trials demonstrated very good to reasonable agreement for exhaust flow and CO, CO2 and HC concentration measurements during static (R2 ≈ 0.97, 0.99, 0.99 and 0.97, respectively) and transient (R2 ≈ 0.88, 0.96, 0.95 and 0.86, respectively) testing.
Technical Paper

Real World Cold Start Emissions from a Diesel Vehicle

2012-04-16
2012-01-1075
This study uses on-board measurement systems to analyze emissions from a diesel engine vehicle during the cold start period. An in-vehicle FTIR (Fourier Transform Inferred) spectrometer and a Horiba on-board measurement system (OBS-1300) were installed on a EURO3 emission-compliant 1.8 TDCi diesel van, in order to measure the emissions. Both regulated and non-regulated emissions were measured, along with an analysis of the NO/NO₂ split. A VBOX GPS system was used to log coordinates and road speed for driving parameters and emission analysis. Thermal couples were installed along the exhaust system to measure the temperatures of exhaust gases during cold start. The real-time fuel consumption was measured. The study also looks at the influence of velocity on emissions of hydrocarbons (HCs) and NOx. The cold start period of an SI-engine-powered vehicle, was typically around 200 seconds in urban driving conditions.
Technical Paper

Diesel Cold Start into Congested Real World Traffic: Comparison of Diesel and B100 for Ozone Forming Potential

2013-04-08
2013-01-1145
EU environmental law requires 30 ozone precursor volatile organic compounds (VOCs) to be measured for urban air quality control. In this study, 28 ozone precursor VOCs were measured at a rate of 0.5 Hz by an in-vehicle FTIR emission measurement system along with other VOCs. The vehicle used was a Euro 3 emission compliant diesel van. The test vehicle was started from a cold ambient temperature soak and driven under real world urban driving conditions. Diesel and B100 (100% Biodiesel) were compared using the same repeat journeys. The VOC emissions and OFP (ozone formation potential) were investigated as a function of engine warm up and ambient temperatures during cold start. The exhaust temperatures were measured along with the exhaust emissions. The temperature and duration of light off of the catalyst for VOC were monitored and showed a cold start period to catalyst light off that was considerably longer than would occur on the NEDC (New European Driving Cycle).
Technical Paper

Real World Diesel Engine Greenhouse Gas Emissions for Diesel Fuel and B100

2013-04-08
2013-01-1514
The transport sector is one of the major contributors to greenhouse gas emissions. This study investigated three greenhouse gases emitted from road transport using a probe vehicle: CO₂, N₂O and CH₄ emissions as a function temperature. It should be highlighted that methane is a greenhouse gas that similarly to carbon dioxide contributes to global warming and climate change. An oxidation catalyst was used to investigate CO₂, N₂O and CH₄ GHG emissions over a real-world driving cycle that included urban congested traffic and extra-urban driving conditions. The results were determined under hot start conditions, but in congested traffic the catalyst cooled below its light-off temperature and this resulted in considerable N₂O emissions as the oxidation catalyst temperature was in the N₂O formation band. This showed higher N₂O during hot start than for diesel fuel and B100 were compared. The B100 fuel was Fatty Acid Methyl Ester (FAME), derived from waste cooking oil, which was mainly RME.
Technical Paper

Impact of Ambient Temperatures on Exhaust Thermal Characteristics during Cold Start for Real World SI Car Urban Driving Tests

2005-10-24
2005-01-3896
Thermal characteristics of SI engine exhaust during cold start and warm up period were investigated for different ambient temperatures (-2 to 32 °C). A Euro 1 emission compliance SI car was tested using a real world urban driving cycle to represent typical city driving patterns and simulate ECE15 urban driving cycle. The test car was equipped with 27 thermocouples along the engine and exhaust pipes so as to measure metal and exhaust gas temperatures along the engine, exhaust and catalyst. The characteristics of thermal properties of engine, exhaust system and catalyst were studied as a function of warm up time and ambient temperature. The temperature and time of the light-off of catalyst were investigated so as to evaluate the effect of thermal properties of the catalyst on emissions. The results show that the coolant water reached the full warm up about 5 minutes in summer and 9 minutes in winter after a cold start.
X