Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Miller-PCCI Combustion in an HSDI Diesel Engine with VVT

2008-04-14
2008-01-0644
A variable valve timing (VVT) mechanism has been applied in a high-speed direct injection (HSDI) diesel engine. The effective compression ratio (εeff) was lowered by means of late intake valve closing (LIVC), while keeping the expansion ratio constant. Premixed charge compression ignition (PCCI) combustion, adopting the Miller-cycle, was experimentally realized and numerically analyzed. Significant improvements of NOx and soot emissions were achieved for a wide range of engine speeds and loads, frequently used in a transient mode test. The operating range of the Miller-PCCI combustion has been expanded up to an IMEP of 1.30 MPa.
Technical Paper

Mixture Formation and Auto-Ignition Behavior of Pure and Mixed Normal Paraffin Fuels

2003-10-27
2003-01-3096
Fuel formulation for premixed charge compression ignition (PCCI) combustion has been attempted based on the mixture formation and auto-ignition behavior of normal paraffin fuels. Different pure and mixed fuels with different blending ratios are tested. The mixture formation behavior is investigated photographically in a constant volume combustion chamber (CVCC) at elevated temperature and pressure. Auto-ignition behavior is tested in a Fuel Ignition Analyzer under different test conditions. It is found that the evaporation rate of pure n-paraffin fuel increases and the ignition delay becomes longer with decreases in the chain length. In the range of test condition used in this study, the flash-boiling phenomenon affects the fuel evaporation rate and ignition delay to some extent. Based on the experimental results a mixture of a very light mixture promoting component (MPC) and a moderately dense igniting component (IC) at a ratio of 3:1 is found to be optimum for PCCI combustion.
X