Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Direct Visualization of Combustion in an E85-Fueled DISI Engine under Various Operation Conditions

2013-04-08
2013-01-1129
Gasoline-direct-injection (GDI) engines have been adopted increasingly by the automotive industry in the recent years due to their performance, effects on the environment, and customers' demand on advanced technology. However, the knowledge of detailed combustion process in such engines is still not thoroughly analyzed and understood. With optically accessible engines (OAE) and advanced measuring techniques, such as high-speed digital imaging, the in-cylinder combustion process is made available directly to researchers. The present study primarily focuses on the effects of different parameters of engine control on the combustion process, such as fuel types, valve deactivation, ignition timing, spark energy, injection timing, air-fuel ratio, and exhaust gas recirculation. Three engine heads of a 2.0L GDI engine are used with modification to acquire different optical access.
Technical Paper

A Rapid Compression Machine Study on Ignition Delay Times of Gasoline Mixtures and their Multicomponent Surrogate Fuels under Diluted and Undiluted Conditions

2021-04-06
2021-01-0554
In this work autoignition delay times of two multi-component surrogates (high and low RON) were experimentally compared with their target full blend gasoline fuels. The study was conducted in a rapid compression machine (RCM) test facility and a direct test chamber (DTC) charge preparation approach was used for mixture preparation. Experiments were carried over the temperature range of 650K-900K and at 10 bar and 20 bar compressed pressure conditions for equivalence ratios of (Φ =) 0.6-1.3. Dilution in the reactant mixture was varied from 0% to 30% CO2 (by mass), with the O2:N2 mole ratio fixed at 1:3.76. This dilution strategy emulates exhaust gas recirculation (EGR) substitution in spark ignition (SI) engines. The multicomponent surrogate captured the reactivity trends of the gasoline-air mixtures reasonably well in comparison to the single component (iso-octane) surrogate.
X