Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Parametric Study of 2007 Standard Heavy-Duty Diesel Engine Particulate Matter Sampling System

2007-01-23
2007-01-0060
Heavy-Duty Diesel (HDD) engines' particulate matter (PM) emissions are most often measured quantitatively by weighing filters that collect diluted exhaust samples pre- and post-test. PM sampling systems that dilute exhaust gas and collect PM samples have different effects on measured PM data. Those effects usually contribute to inter-laboratory variance. The U.S. Environmental Protection Agency (EPA)'s 2007 PM emission measurement regulations for the test of HDD engines should reduce variability, but must also cope with PM mass that is an order of magnitude lower than legacy engine testing. To support the design of a 2007 US standard HDD PM emission sampling system, a parametric study based on a systematic Simulink® model was performed. This model acted as an auxiliary design tool when setting up a new 2007 HDD PM emission sampling system in a heavy-duty test cell at West Virginia University (WVU). It was also designed to provide assistance in post-test data processing.
Technical Paper

Effect of Ambient Dilution on Coagulation of Particulate Matter in a Turbulent Dispersing Plume

2002-03-04
2002-01-0652
In recent years, there has been an increasing need for accurately predicting the nucleation, coagulation, and dynamics of particulate matter (PM) emissions from diesel engines. The proposed United Sates Environmental Protection Agency (USEPA) standard on fine particles, is focused on allowing levels of 50 μg/m3 annual average concentration of PM10 (particles smaller than 10 μm aerodynamic diameter) and an additional annual average standard of 15 μg/m3 of fine particles smaller than 2.5 μm in the atmosphere. Existing legislation for particulates is however, based on measurement by mass but not on the particle number density. The current system does not properly account for the small particulates, mostly of the nucleation type, which have an insignificant mass despite being present in very high numbers. These small particulates in high numbers can contribute extremely large surface areas for biological interaction, and they can pose a serious health threat.
Technical Paper

Fresh and Aged SCRT Systems Retrofitted on a MY 1998 Class-8 Tractor: Investigation on In-use Emissions

2011-09-11
2011-24-0175
In order to comply with stringent 2010 US-Environmental Protection Agency (EPA) on-road, Heavy-Duty Diesel (HDD) emissions regulations, the Selective Catalytic Reduction (SCR) aftertreatment system has been judged by a multitude of engine manufacturers as the primary technology for mitigating emissions of oxides of nitrogen (NOx). As virtually stand-alone aftertreatment systems, SCR technology further represents a very flexible and efficient solution for retrofitting legacy diesel engines as the most straightforward means of cost-effective compliance attainment. However, the addition of a reducing agent injection system as well as the inherent operation limitations of the SCR system due to required catalyst bed temperatures introduce new, unique problems, most notably that of ammonia (NH₃) slip.
Technical Paper

Comparison of Averaging Techniques Employed in Calculating Not-to-Exceed Emissions for Heavy-Duty Vehicles

2005-10-24
2005-01-3787
Certification of heavy-duty diesel requires engines to be tested on an engine dynamometer and meet certification in accordance with specific procedures and cycles. However, real-world emissions have been observed to be significantly different from in-laboratory testing. The brake-specific emissions from vehicles are influenced by various operating parameters such as engine speed, load, traffic flow and ambient conditions, hence, vary from the values obtained from the certification tests. In the future, US EPA and other state regulating bodies will require the engine manufacturers to measure in-use emissions from vehicles operating under “real-world” operating conditions. A test vehicle instrumented with West Virginia University's (WVU) Mobile Emissions Measurement System (MEMS), a portable onboard tailpipe emissions measurement system, was used to obtain engine operating conditions, vehicle speed and in-use emission rates of CO2 and NOx.
X