Refine Your Search

Search Results

Technical Paper

Stiff versus Yielding Seats: Analysis of Matched Rear Impact Tests

2007-04-16
2007-01-0708
The objective of this study was to analyze available anthropomorphic test device (ATD) responses from KARCO rear impact tests and to evaluate an injury predictive model based on crash severity and occupant weight presented by Saczalski et al. (2004). The KARCO tests were carried out with various seat designs. Biomechanical responses were evaluated in speed ranges of 7-12, 13-17, 18-23 and 24-34 mph. For this analysis, all tests with matching yielding and stiff seats and matching occupant size and weight were analyzed for cases without 2nd row occupant interaction. Overall, the test data shows that conventional yielding seats provide a high degree of safety for small to large adult occupants in rear crashes; this data is also consistent with good field performance as found in NASS-CDS. Saczalski et al.'s (2004) predictive model of occupant injury is not correct as there are numerous cases from NASS-CDS that show no or minor injury in the region where serious injury is predicted.
Technical Paper

A Theoretical, Risk Assessment Procedure for In-Position Drivers Involved in Full-Engagement Frontal Impacts

2003-03-03
2003-01-1354
A theoretical, mathematical, risk assessment procedure was developed to estimate the fraction of drivers that incurred head and thoracic AIS3+ injuries in full-engagement frontal crashes. The estimates were based on numerical simulations of various real-world events, including variations of crash severity, crash speed, level of restraint, and occupant size. The procedure consisted of four steps: (1) conduct the simulations of the numerous events, (2) use biomechanical equations to transform the occupant responses into AIS3+ risks for each event, (3) weight the maximum risk for each event by its real-world event frequency, and (4) sum the weighted risks. To validate the risk assessment procedure, numerous steps were taken. First, a passenger car was identified to represent average field performance.
Technical Paper

Injury Risk Assessment of Several Crash Data Sets

2003-03-03
2003-01-1214
Risk curves are developed for several crash data sets, expressing the probabilities of injury as a function of HIC, Extension Moment, Neck Tension and Maximum Deflection, respectively. The statistical method uses concept of thresholds that are interval censored and right censored. A combined evaluation method is used to select a “best” curve among the curves derived from various methods.
Technical Paper

Head Injury Potential Assessment in Frontal Impacts by Mathematical Modeling

1994-11-01
942212
The potential of head injury in frontal barrier impact tests was investigated by a mathematical model which consisted of a finite element human head model, a four segments rigid dynamic neck model, a rigid body occupant model, and a lumped-mass vehicle structure model. The finite element human head model represents anatomically an average adult head. The rigid body occupant model simulates an average adult male. The structure model simulates the interior space and the dynamic characteristics of a vehicle. The neck model integrates the finite element human head to the occupant body to give a more realistic kinematic head motion in a barrier crash test. Model responses were compared with experimental cadaveric data and vehicle crash data for the purpose of model validation to ensure model accuracy. Model results show a good agreement with those of the tests.
Technical Paper

Finite Element Modeling of Structural Foam and Head Impact Interaction with Vehicle Upper Interior

1995-02-01
950885
This paper first describes an experimental analytical approach and numerical procedures used to establish crushable foam material constants needed in finite element (FE) analysis. Dynamic compressive stress-strain data of a 2 pcf Dytherm foam, provided by ARCO Chemical, is used to determine the material parameters which appears in the foam constitutive equation. A finite element model simulating a 15 mph spherical headform impact with a foam sample 6 in. x 6 in. x 1 in. fixed against a rigid plate is developed. The predicted force-deflection characteristic is validated against test data to characterize the initial loading and final unloading stiffnesses of the foam during impact. Finite element modeling and analysis of 15 mph spherical headform impact with component sections of upper interior structures of a passenger compartment is presented.
Technical Paper

Finite Element Modeling and Development of the Deformable Featureless Headform and Its Application to Vehicle Interior Head Impact Testing

1996-02-01
960104
This paper describes the steps and procedures involved in the development, calibration, and validation of a finite element model of a deformable featureless headform (Hybrid III head without nose). Development efforts included: a headform scan to verify geometric accuracy, quantification of general-purpose construction of the finite element model from the scanned data, viscoelastic parameters for the constitutive model definition of the headform skin, and models of drop tests with impact speeds of 9.775, 14.484, 19.312, and 24.140 km/h (6.074, 9, 12, and 15 mph). The predictions of all pertinent headform responses during the calibration were in excellent agreement with related experiments. The validity of the headform model and the headform impact methodology were verified in both component and full vehicle environments. This was accomplished through comparisons of finite element simulations with tests of the headform responses at 24.140 km/h (15 mph) impact.
Technical Paper

Dynamic Axial Tolerance of the Human Foot-Ankle Complex

1996-11-01
962426
Axial loading of the calcaneus-talus-tibia complex is an important injury mechanism for moderate and severe vehicular foot-ankle trauma. To develop a more definitive and quantitative relationship between biomechanical parameters such as specimen age, axial force, and injury, dynamic axial impact tests to isolated lower legs were conducted at the Medical College of Wisconsin (MCW). Twenty-six intact adult lower legs excised from unembalmed human cadavers were tested under dynamic loading using a mini-sled pendulum device. The specimens were prepared, pretest radiographs were taken, and input impact and output forces together with the pathology were obtained using load cell data. Input impact forces always exceeded the forces recorded at the distal end of the preparation. The fracture forces ranged from 4.3 to 11.4 kN.
Technical Paper

Derivation and Evaluation of a Provisional, Age-Dependent, AIS3+ Thoracic Risk Curve for Belted Adults in Frontal Impacts

2005-04-11
2005-01-0297
An age-dependent, serious-to-fatal (AIS3+), thoracic risk curve was derived and evaluated for frontal impacts. The study consisted of four parts. In Part 1, two datasets of post mortem human subjects (PMHS) were generated for statistical and sensitivity analyses. In Part 2, logistic regression analyses were conducted. For each dataset, two statistical methods were applied: (1) a conventional maximum likelihood method, and (2) a modified maximum likelihood method. Therefore, four statistical models were derived — one for each dataset/statistical method combination. For all of the resulting statistical models (risk curves), the linear combination of maximum normalized sternum deflection and age of the PMHS was identified as a feasible predictor of AIS3+ thoracic injury probability. In Part 3, the PMHS-based risk curves were transformed into test-dummy-based risk curves. In Part 4, validation studies were conducted for each risk curve.
Technical Paper

The Position of the United States Delegation to the ISO Working Group 6 on the Use of HIC in the Automotive Environment

1985-06-01
851246
A review and analysis of existing cadaver head impact data has been conducted in this paper. The association of the Head Injury Criterion with experimental cadaver skull fracture and brain damage has been investigated, and risk curves of HIC versus skull fracture and brain damage have been developed. Limitation of the search for the maximum HIC duration to 15ms has been recommended for the proper use of HIC in the automotive crash environment.
Technical Paper

Injury Risk Curves for Children and Adults in Frontal and Rear Collisions

1997-11-12
973318
This paper describes the development of injury risk curves for measurements made with the CRABI and Hybrid III family of biofidelic child and adult dummies that are used to evaluate restraint systems in frontal and rear-end collision simulations. Injury tolerance data are normalized for size and strength considerations. These data are analyzed to give normalized injury risk curves for neck tension, neck extension moment, combined neck tension and extension moment, sternal compression, the rate of sternal compression, and the rate of abdominal compression for children and adults. Using these injury risk curves dummy response limits can be defined for prescribed injury risk levels. The injury risk levels associated with the various injury assessment reference values currently used with the CRABI and Hybrid III family of dummies are noted.
Technical Paper

Human Ankle Impact Response in Dorsiflexion

1990-10-01
902308
Although various automobile accident surveys showed between 20 to 30% of lower extremity injuries involved the foot or ankle, there is little information in the existing literature on the the injury mechanisms of ankle injuries for automobile occupants involved in frontal impacts. This study addresses the injury to ankles involving dorsiflexion caused by impact loading to the bottom of the foot. Types of injuries include malleolus fractures and ligament avulsions and ruptures. Nine pair of cadaver and two Hybrid 3 lower limbs were impacted on the bottom of the foot with a 16 kg pneumatically propelled linear impactor. A horizontally oriented bar struck the foot 62 mm distally of the ankle joint with velocities between 3 and 8 m/s. The proximal end of the tibia/fibula was fixed to a rigid support through a triaxial load cell. Load cells on the foot and impactor along with high-speed photography provided the response data of the foot and ankle.
Technical Paper

Biomechanics of 4-Point Seat Belt Systems in Frontal Impacts

2003-10-27
2003-22-0017
The biomechanical behavior of 4-point seat belt systems was investigated through MADYMO modeling, dummy tests and post mortem human subject tests. This study was conducted to assess the effect of 4-point seat belts on the risk of thoracic injury in frontal impacts, to evaluate the ability to prevent submarining under the lap belt using 4-point seat belts, and to examine whether 4-point belts may induce injuries not typically observed with 3-point seat belts. The performance of two types of 4-point seat belts was compared with that of a pretensioned, load-limited, 3-point seat belt. A 3-point belt with an extra shoulder belt that “crisscrossed” the chest (X4) appeared to add constraint to the torso and increased chest deflection and injury risk. Harness style shoulder belts (V4) loaded the body in a different biomechanical manner than 3-point and X4 belts.
Technical Paper

Evaluation of the Field Relevance of Several Injury Risk Functions

2010-11-03
2010-22-0004
An evaluation of the four injury risk curves proposed in the NHTSA NCAP for estimating the risk of AIS≻=3 injuries to the head, neck, chest and AIS≻=2 injury to the Knee-Thigh-Hip (KTH) complex has been conducted. The predicted injury risk to the four body regions based on driver dummy responses in over 300 frontal NCAP tests were compared against those to drivers involved in real-world crashes of similar severity as represented in the NASS. The results of the study show that the predicted injury risks to the head and chest were slightly below those in NASS, and the predicted risk for the knee-thigh-hip complex was substantially below that observed in the NASS. The predicted risk for the neck by the Nij curve was greater than the observed risk in NASS by an order of magnitude due to the Nij risk curve predicting a non-zero risk when Nij = 0. An alternative and published Nte risk curve produced a risk estimate consistent with the NASS estimate of neck injury.
Technical Paper

Improved Neck Injury Risk Curves for Tension and Extension Moment Measurements of Crash Dummies

2000-01-01
2000-01-SC05
This paper describes improvements made to the injury risk curves for peak neck tension, peak neck extension moment and a linear combination of tension and extension moment that produce peak stress in the anterior-longitudinal ligament at the head-to-neck junction. Data from previously published experiments that correlated neck injuries to 10-week-old, anesthetized pigs and neck response measurements of a 3-year-old child dummy that were subjected to similar airbag deployments are updated and used to generate Normal probability curves for the risk of AIS ≥ 3 neck injury for the 3-year-old child. These curves are extended to other sizes and ages by normalizing for neck size. Factors for percent of muscle tone and ligamentous failure stress as a function of age are incorporated in the risk analysis. The most sensitive predictor of AIS ≥ 3 neck injury for this data set is peak neck tension.
Technical Paper

The Influence of Superficial Soft Tissues and Restraint Condition on Thoracic Skeletal Injury Prediction

2001-11-01
2001-22-0008
The purpose of this study is to evaluate the hard tissue injury -predictive value of various thoracic injury criteria when the restraint conditions are varied. Ten right-front passenger human cadaver sled tests are presented, all of which were performed at 48 km/h with nominally identical sled deceleration pulses. Restraint conditions evaluated are 1) force-limiting belt and depowered airbag (4 tests), 2) non-depowered airbag with no torso belt (3 tests), and 3) standard belt and depowered airbag (3 tests). Externally measured chest compression is shown to correspond well with the pre sence of hard tissue injury, regardless of restraint condition, and rib fracture onset is found to occur at approximately 25% chest compression. Peak acceleration and the average spinal acceleration measured at the first and eighth or ninth thoracic vertebrae are shown to be unrelated to the presence of injury, though clear variations in peaks and time histories among restraint conditions can be seen.
Technical Paper

The Effects of Skull Thickness Variations on Human Head Dynamic Impact Responses

2001-11-01
2001-22-0018
Variations in human skull thickness affecting human head dynamic impact responses were studied by finite element modeling techniques, experimental measurements, and histology examinations. The aims of the study were to better understand the influences of skull thickness variations on human head dynamic impact responses and the injury mechanisms of human head during direct impact. The thicknesses of the frontal bone of seven human cadaver skulls were measured using ultrasonic technology. These measurements were compared with previous experimental data. Histology of the skull was recorded and examined. The measured data were analyzed and then served as a reference to vary the skull thickness of a previously published three-dimensional finite element human head model to create four models with different skull thickness. The skull thicknesses modeled are 4.6 mm, 5.98 mm, 7.68 mm, and 9.61 mm.
Technical Paper

Development of a Subhuman Primate Brain Finite Element Model to Investigate Brain Injury Thresholds Induced by Head Rotation

2020-03-31
2019-22-0003
An anatomically detailed rhesus monkey brain FE model was developed to simulate in vivo responses of the brain of sub-human primates subjected to rotational accelerations resulting in diffuse axonal injury (DAI). The material properties used in the monkey model are those in the GHBMC 50th percentile male head model (Global Human Body Model Consortium). The angular loading simulations consisted of coronal, oblique and sagittal plane rotations with the center of rotation in neck to duplicate experimental conditions. Maximum principal strain (MPS) and Cumulative strain damage measure (CSDM) were analyzed for various white matter structures such as the cerebrum subcortical white matter, corpus callosum and brainstem.
Technical Paper

Opportunities for Injury Reduction in US Frontal Crashes: An Overview by Structural Engagement, Vehicle Class, and Occupant Age

2013-11-11
2013-22-0017
An overview NASS study of US frontal crashes was performed to investigate crash involvement, driver injury distributions and rates in airbag equipped vehicles by vehicle class and structural engagement. Frontal crash bins were based on taxonomy of structural engagement, i.e., Full Engagement, Offset, Between Rails and Corner impact crashes. A new classification of Corner impacts included frontal small overlap impacts with side damage as coded by NASS CDS. Belted drivers of two age groups, between 16 and 50 and over 50 years old, were considered. Vehicles were grouped into light and heavy passenger cars and lights trucks, and vans. A method to identify and address overly influential NASS weights was developed based on considerations of weighting factor statistics. The new taxonomy, with an expanded definition of corner impacts, allowed a more comprehensive classification of frontal crash modes.
Technical Paper

The Field Relevance of NHTSA's Oblique Research Moving Deformable Barrier Tests

2014-11-10
2014-22-0007
A small overlap frontal crash test has been recently introduced by the Insurance Institute for Highway Safety in its frontal rating scheme. Another small overlap frontal crash test is under development by the National Highway Traffic Safety Administration (NHTSA). Whereas the IIHS test is conducted against a fixed rigid barrier, the NHTSA test is conducted with a moving deformable barrier that overlaps 35% of the vehicle being tested and the angle between the longitudinal axis of the barrier and the longitudinal axis of the test vehicle is 15 degrees. The field relevance of the IIHS test has been the subject of a paper by Prasad et al. (2014). The current study is aimed at examining the field relevance of the NHTSA test.
Technical Paper

Biomechanical Analysis of Human Abdominal Impact Responses and Injuries through Finite Element Simulations of a Full Human Body Model

2005-11-09
2005-22-0016
Human abdominal response and injury in blunt impacts was investigated through finite element simulations of cadaver tests using a full human body model of an average-sized adult male. The model was validated at various impact speeds by comparing model responses with available experimental cadaver test data in pendulum side impacts and frontal rigid bar impacts from various sources. Results of various abdominal impact simulations are presented in this paper. Model-predicted abdominal dynamic responses such as force-time and force-deflection characteristics, and injury severities, measured by organ pressures, for the simulated impact conditions are presented. Quantitative results such as impact forces, abdominal deflections, internal organ stresses have shown that the abdomen responded differently to left and right side impacts, especially in low speed impact.
X