Refine Your Search

Search Results

Viewing 1 to 8 of 8
Journal Article

Investigations on the Effects of the Ignition Spark with Controlled Autoignition (CAI)

2009-06-15
2009-01-1770
Controlled Autoignition (CAI) is a very promising technology for simultaneous reduction of fuel consumption and engine-out emissions [3, 4, 9, 16]. But the operating range of this combustion mode is limited on the one hand by high pressure gradients with the subsequent occurrence of knocking, increasing NOX-emissions and cyclic variations, and on the other hand by limited operating stability due to low mixture temperatures. At higher loads the required amount of internal EGR decrease to reach self-ignition conditions decrease and hence the influence of the ignition spark gain. The timing of the ignition spark highly influence the combustion process at higher loads. With the ignition spark, pre-reactions are initialized with a defined heat release. Thus the location of inflammation and flame propagation can be strongly influenced and cyclic variations at higher loads can be reduced.
Journal Article

Experimental Studies on the Occurrence of Low-Speed Pre-Ignition in Turbocharged GDI Engines

2015-04-14
2015-01-0753
In the present paper the results of a set of experimental investigations on LSPI are discussed. The ignition system of a test engine was modified to enable random spark advance in one of the four cylinders. LSPI sequences were successfully triggered and exhibited similar characteristics compared to regularly occurring pre-ignition. Optical investigations applying a high speed camera system enabling a visualization of the combustion process were performed. In a second engine the influence of the physical properties of the considered lubricant on the LSPI frequency was analyzed. In addition different piston ring assemblies have been tested. Moreover an online acquisition of the unburned hydrocarbon emissions in the exhaust gas was performed. The combination of these experimental techniques in the present study provided further insights on the development of LSPI sequences.
Journal Article

High Pressure Gasoline Direct Injection in Spark Ignition Engines - Efficiency Optimization through Detailed Process Analyses

2016-10-17
2016-01-2244
At part load and wide open throttle operation with stratified charge and lean mixture conditions the Direct Injection Spark Ignition (DISI) engine offers similar efficiency levels compared to compression ignition engines The present paper reports on results of recent studies on the impact of the in-cylinder processes in DISI engines e. g. the injection, the in-cylinder flow, the mixture preparation and the ignition on the combustion, the energy conversion and the exhaust emission behavior. The analyses of the spray behavior, of the in-cylinder flow during compression as well as of the flame propagation have been carried out applying advanced optical measurement techniques. The results enable a targeted optimization of the combustion process with respect to engine efficiency and exhaust emissions. The benefits of an increase in fuel injection pressures up to 100 MPa are discussed.
Journal Article

Premature Flame Initiation in a Turbocharged DISI Engine - Numerical and Experimental Investigations

2013-04-08
2013-01-0252
This paper presents the results of experimental and numerical investigations on pre-ignition in a series-production turbocharged DISI engine. Previous studies led to the conclusion that pre-ignition can be triggered by auto-ignition of oil droplets generated in the combustion chamber. Analysis of more recent experiments shows that a modification of the engine operation parameters that promotes spray/lubricant interaction also increases pre-ignition frequency, while modifications that enhance the speed of chemical reactions (thereby favoring auto-ignition) have little or no influence. The experimental and numerical findings can be explained if we assume the existence of a substance (originating from lubricant/fuel interaction) that displays extremely short ignition delay times.
Technical Paper

Optical Fiber Technique as a Tool to Improve Combustion Efficiency

1990-10-01
902138
A multi-optical fiber technique is presented, which enables one to detect the flame propagation during non-knocking and knocking conditions in real production engines. The measurement technique is appropriate to detect knock onset locations and to describe the propagation of knocking reaction fronts. With this knowledge, the combustion chamber shape can be optimized, leading to a better knock resistance and higher combustion efficiencies. Results of flame propagation under non-knocking and knocking engine operating conditions are presented. In addition, correlations between knock onset locations and areas in which knock damage occurs are shown for different engines. Presented are the effects of combustion chamber modifications on the combustion efficiency, based on the analysis of the optical fiber measurements.
Technical Paper

A New Flame Jet Concept to Improve the Inflammation of Lean Burn Mixtures in SI Engines

2005-10-24
2005-01-3688
Engines with gasoline direct injection promise an increase in efficiency mainly due to the overall lean mixture and reduced pumping losses at part load. But the near stoichiometric combustion of the stratified mixture with high combustion temperature leads to high NOx emissions. The need for expensive lean NOx catalysts in combination with complex operation strategies may reduce the advantages in efficiency significantly. The Bowl-Prechamber-Ignition (BPI) concept with flame jet ignition was developed to ignite premixed lean mixtures in DISI engines. The mainly homogeneous lean mixture leads to low combustion temperatures and subsequently to low NOx emissions. By additional EGR a further reduction of the combustion temperature is achievable. The BPI concept is realized by a prechamber spark plug and a piston bowl. The main feature of the concept is its dual injection strategy.
Journal Article

Investigations on Pre-Ignition in Highly Supercharged SI Engines

2010-04-12
2010-01-0355
This paper presents the results of a study on reasons for the occurrence of pre-ignition in highly supercharged spark ignition engines. During the study, the phenomena to be taken into account were foremost structured into a decision tree according to their physical working principles. Using this decision tree all conceivable single mechanisms to be considered as reasons for pre-ignition could be derived. In order to judge each of them with respect to their ability to promote pre-ignition in a test engine, experimental investigations as well as numerical simulations were carried out. The interdependence between engine operating conditions and pre-ignition frequency was examined experimentally by varying specific parameters. Additionally, optical measurements using an UV sensitive high-speed camera system were performed to obtain information about the spatial distribution of pre-ignition origins and their progress.
Technical Paper

Knocking Investigations in a small Two-Stroke SI Engine

2009-11-03
2009-32-0013
The trend of higher specific power and increased volumetric efficiency leads to unwanted combustion phenomenon such as knocking, pre-ignition and self-ignition. For four-stroke engines, the literature reports that knocking depends, to a large extent, on the ignition angle, the degree of enrichment and the volumetric efficiency. In recent research, knock investigations in two-stroke engines have only been carried out to a limited extent. This paper discusses an investigation of the influence of various parameters on the knock characteristics of a small, high-speed, two-stroke SI engine. In particular, the degree of enrichment, the volumetric efficiency and the ignition timing serve as the parameters.
X