Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Combustion Enhancement in a Gas Engine Using Low Temperature Plasma

2020-04-14
2020-01-0823
Low temperature plasma ignition has been proposed as a new ignition technique as it has features of good wear resistance, low energy release and combustion enhancement. In the authors’ previous study, lean burn limit could be extended slightly by low temperature plasma ignition while the power supply’s performance with steep voltage rising with time (dV/dt), showed higher peak value of the rate of heat release and better indicated thermal efficiency. In this study, basic study of low temperature plasma ignition system was carried out to find out the reason of combustion enhancement. Moreover, the durability test of low temperature plasma plug was performed to check the wear resistance.
Technical Paper

Research and Development of a Direct Injection Stratified Charge Rotary Engine with a Pilot Flame Ignition System

2001-12-01
2001-01-1844
A Direct Injection Stratified Charge Rotary Engine ( DISC-RE ) with a pilot flame ignition system has been studied to find the possibility of simultaneous reductions of fuel consumption rate and HC exhaust gas emissions. Firstly, combustion characteristics in a model combustion chamber, which simulates the DISC-RE were examined from the viewpoints of calculation and experiment. The high speed photography and the indicated pressure analysis were experimentally performed while numerical calculations of the mixture formation and combustion processes were also carried out. As a result, it has been found that the combustion using the pilot flame ignition system is much activated and a better ignitability is attained under lean mixtures than using a spark ignition system. Secondly, a single rotor with 650 cc displacement DISC-RE was built as a prototype. Combustion characteristics and its performance were tested using a combustion analyzer.
Technical Paper

Numerical Investigation of the Effect of Engine Speed and Delivery Ratio on the High-Speed Knock in a Small Two-Stroke SI Engine

2022-01-09
2022-32-0080
Knocking occurs within the high-speed range of small two-stroke engines used in handheld work equipment. High-speed knock may be affected by the engine speed and delivery ratio. However, evaluation of these factors independently using experimental methods is difficult. Therefore, in this study, these factors were independently evaluated using numerical calculations. The purpose of this study was to clarify the mechanism by which the intensity of high-speed knocking that occurs in small two-stroke engines becomes stronger. The results suggest that temperature inhomogeneity due to insufficient mixing of fresh air and previously burned gas may induce high-speed knocking in the operating range at high engine speeds.
Journal Article

A Study of Ignition Method for Gas Heat Pump Engine Using Low Temperature Plasma

2020-01-24
2019-32-0622
Low temperature plasma ignition has been proposed as a new ignition technique as it has features of good wear resistance, low energy release and combustion enhancement. In the authors’ previous study, lean burn limit could be extended by low temperature plasma ignition while a voltage drop during discharge, leading to the transition to arc discharge, was found. In this study, the structure of plug and power supply’s performance with steep voltage rising with time, dV/dt, are examined to investigate the effects on combustion performance. As a result, comparing three power sources of conventional, IES and steep dV/dt, steep dV/dt showed small cycle-to-cycle variation and shorter combustion period, leading to higher peak value of the rate of heat release and better indicated thermal efficiency by relatively 6% and 4% compared to CIC and IES, respectively.
Technical Paper

Analysis of Mixture Formation Process in a PFI Motorcycle Engine

2015-11-17
2015-32-0767
PFI (Port Fuel Injection) gasoline engines for motorcycles have some problems such as slow transient response because of wall wet of fuel caused by the injector's layout. Hence, it is important to understand the characteristics of fuel sprays such as droplet size and distribution of fuel concentration. Considering the spray formation in a port, there are three kinds of the essential elements: breakup, evaporation and wall impingement. However, it is difficult to observe three of them at the same time. Therefore, the authors have made research step by step. In the authors' previous study, the authors focused on the wall collision, droplet sizes, droplet speeds and the space distribution of the droplets. In this study, the authors focused on evaporation. A direct sampling method using FID (Flame Ionization Detector) for evaporating fuel was established and the concentration distribution of evaporating fuel in the port was measured and analyzed.
X