Refine Your Search

Topic

Search Results

Journal Article

Driving Simulator Performance in Charcot-Marie-Tooth Disease Type 1A

2019-05-10
Abstract Introduction: This study evaluates driving ability in those with Charcot Marie Tooth Disease Type 1A, a hereditary peripheral neuropathy. Methods: Individuals with Charcot Marie Tooth Disease Type 1A (n = 18, age = 42 ± 7) and controls (n = 19; age = 35 ± 10) were evaluated in a driving simulator. The Charcot Marie Tooth Neuropathy Score version 2 was obtained for individuals. Rank Sum test and Spearman rank correlations were used for statistical analysis. Results: A 74% higher rate of lane departures and an 89% higher rate of lane deviations were seen in those with Charcot Marie Tooth Disease Type 1A than for controls (p = 0.005 and p < 0.001, respectively). Lane control variability was 10% higher for the individual group and correlated with the neuropathy score (rS = 0.518, p = 0.040), specifically sensory loss (rS = 0.710, p = 0.002) and pinprick sensation loss in the leg (rS = 0.490, p = 0.054).
Journal Article

3D Scene Reconstruction with Sparse LiDAR Data and Monocular Image in Single Frame

2017-09-23
Abstract Real-time reconstruction of 3D environment attributed with semantic information is significant for a variety of applications, such as obstacle detection, traffic scene comprehension and autonomous navigation. The current approaches to achieve it are mainly using stereo vision, Structure from Motion (SfM) or mobile LiDAR sensors. Each of these approaches has its own limitation, stereo vision has high computational cost, SfM needs accurate calibration between a sequences of images, and the onboard LiDAR sensor can only provide sparse points without color information. This paper describes a novel method for traffic scene semantic segmentation by combining sparse LiDAR point cloud (e.g. from Velodyne scans), with monocular color image. The key novelty of the method is the semantic coupling of stereoscopic point cloud with color lattice from camera image labelled through a Convolutional Neural Network (CNN).
Journal Article

Efficient Lane Detection Using Deep Lane Feature Extraction Method

2017-09-23
Abstract In this paper, an efficient lane detection using deep feature extraction method is proposed to achieve real-time lane detection in diverse road environment. The method contains three main stages: 1) pre-processing, 2) deep lane feature extraction and 3) lane fitting. In pre-processing stage, the inverse perspective mapping (IPM) is used to obtain a bird's eye view of the road image, and then an edge image is generated using the canny operator. In deep lane feature extraction stage, an advanced lane extraction method is proposed. Firstly, line segment detector (LSD) is applied to achieve the fast line segment detection in the IPM image. After that, a proposed adaptive lane clustering algorithm is employed to gather the adjacent line segments generated by the LSD method. Finally, a proposed local gray value maximum cascaded spatial correlation filter (GMSF) algorithm is used to extract the target lane lines among the multiple lines.
Journal Article

An Optical-Based Technique to Obtain Vibration Characteristics of Rotating Tires

2019-08-21
Abstract The dynamic characteristics of tires are critical in the overall vibrations of vehicles because the tire-road interface is the only medium of energy transfer between the vehicle and the road surface. Obtaining the natural frequencies and mode shapes of the tire helps in improving the comfort of the passengers. The vibrational characteristics of structures are usually obtained by performing conventional impact hammer modal testing, in which the structure is excited with an impact hammer and the response of the structure under excitation is captured using accelerometers. However, this approach only provides the response of the structure at a few discrete locations, and it is challenging to use this procedure for rotating structures. Digital Image Correlation (DIC) helps in overcoming these challenges by providing the full-field response of the structure.
Journal Article

Effect of Tool Tilt Angles on Mechanical and Microstructural Properties of Friction Stir Welding of Dissimilar Dual-Phase 600 Steel and AA6082-T6 Aluminum Alloy

2020-09-09
Abstract The present study aims to join the dissimilar materials such as Dual-Phase (DP) 600 Steel and AA6082-T6 Aluminum (Al) alloy via the friction stir welding (FSW) process with a reduced intermetallic compound (IMC) layer. The five different tool tilt angles of 0°, 0.5°, 1°, 1.5°, and 2° were selected to fabricate the joints. The weld characteristics such as tensile strength, hardness, macrostructure, and microstructure were analyzed. The weld interface was studied by employing an optical microscope and scanning electron microscope (SEM) equipped with energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) techniques. The joint produced with a 0.5° tilt angle has achieved the highest ultimate tensile strength (UTS) of 240 MPa. The IMCs were identified as Fe2Al8 and FeAl2 from the joint interface studies.
Journal Article

Process-Structure-Property Relationship in Dissimilar Al-High-Strength Steel Impact Spot Welds Created Using Vaporizing Foil Actuator Welding

2020-09-09
Abstract Vaporizing foil actuator welding (VFAW) created nominally solid-state spot welds between high-strength DP980 steel and 6022 T4 aluminum. The effects of varying the impact velocity and angle between the Al flyer and target steel sheets on the structure and properties of the joints were evaluated using photonic Doppler velocimetry (PDV), scanning electron microscopy (SEM), fractography, and energy-dispersive spectroscopy (EDS) analysis. The incident angle and velocity of the flyer plate were quantified using PDV, and their relations to the structure and properties of the joint were assessed with microscopy and strength testing. Impact velocity and average impact angle increase with the increasing standoff. Lower impact angles and higher impact velocities promoted interfacial failure due to increased melting, higher intermetallic thickness, and lower wave amplitude and wavelength.
Journal Article

The Effect of Current Mode on the Crack and Failure in the Resistance Spot Welding of the Advanced High-Strength DP590 Steel

2020-09-09
Abstract The causes of failure due to cracking in the resistance spot welding of the advanced high-strength steels dual-phase 590 (DP590) were investigated using scanning electron microscopy (SEM), optical microscopy, and the tensile-shear test. The results showed that by increasing the current amount, the formation of the melting zone occurred in the heat-affected zone, leading to the cracking in this area, reducing the tensile strength and decreasing the mechanical properties; the initiation and growth of cracking and failure in this region also happened. In the heat-affected zone, by increasing the current amount with the softening phenomenon, the recrystallized coarse grains also occurred, eventually resulting in the loss of mechanical properties. The results of the tensile-shear test also indicated that by increasing the current up to 12 kA, the strength was raised, but the ductility was reduced.
Journal Article

Design of High-Lift Airfoil for Formula Student Race Car

2018-12-05
Abstract A two-dimensional model of three elements, high-lift airfoil, was designed at a Reynolds number of ?????? using computational fluid dynamics (CFD) to generate downforce with good lift-to-drag efficiency for a formula student open-wheel race car basing on the nominal track speeds. The numerical solver uses the Reynolds-averaged Navier-Stokes (RANS) equation model coupled with the Langtry-Menter four-equation transition shear stress transport (SST) turbulence model. Such model adds two further equations to the ?? − ?? SST model resulting in an accurate prediction for the amount of flow separation due to adverse pressure gradient in low Reynolds number flow. The ?? − ?? SST model includes the transport effects into the eddy-viscosity formulation, whereas the two equations of transition momentum thickness Reynolds number and intermittency should further consider transition effects at low Reynolds number.
Journal Article

Improving Hole Expansion Ratio by Parameter Adjustment in Abrasive Water Jet Operations for DP800

2018-09-17
Abstract The use of Abrasive Water Jet (AWJ) cutting technology can improve the edge stretchability in sheet metal forming. The advances in technology have allowed significant increases in working speeds and pressures, reducing the AWJ operation cost. The main objective of this work was to determine the effect of selected AWJ cutting parameters on the Hole Expansion Ratio (HER) for a DP800 (Dual-Phase) Advanced High-Strength Steel (AHSS) with s0 = 1.2 mm by using a fractional factorial design of experiments for the Hole Expansion Tests (HET). Additionally, the surface roughness and residual stresses were measured on the holes looking for a possible relation between them and the measured HER. A deep drawing quality steel DC06 with s0 = 1.0 mm was used for reference. The fracture occurrence was captured by high-speed cameras and by Acoustic Emissions (AE) in order to compare both methods.
Journal Article

Development of Framework for Lean Implementation: An Interpretive Structural Modeling and Interpretive Ranking Process Approach

2021-04-30
Abstract Today’s explosive condition of the market is compelling the manufacturing organizations to switch from traditional manufacturing (TM) to lean manufacturing (LM) to create a footprint in this competitive era. In this article, 16 critical success factors (CSFs) for LM implementation are identified through a vast literature review, the opinion of academicians and industry experts and interpretive structural modeling (ISM) is used to create interrelationships among the identified CSFs, and interpretive ranking process (IRP) rank these CSFs based on dominance with respect to performance dimensions. Leadership and management made the foundation of an ISM model while the training and people development have secured the first rank in the IRP model. Implementation of such ISM- and IRP-based models of CSF would give a clear understanding of these CSFs so that LM researchers, decision-makers, managers, and practitioners of LM will use their resources more efficiently.
Journal Article

A Willingness to Learn: Elder Attitudes toward Technology

2021-07-06
Abstract The ability of senior citizens as well as other members of the general population to engage in an effective manner with technology is of increasing importance as new and innovative technologies become available. While recognizing the challenges that technologies can have on different populations, the ability to interact successfully with new technologies will, for seniors, have important consequences that can affect their quality of life and those of their families in numerous and important ways. This study, building upon previous research, examines the major dimensions of decision-making regarding attitudes toward autonomous vehicle technologies (ATVs) and their use. The study utilized data from a study of senior citizens in the Dallas-Fort Worth (DFW) area and compared the results with a sample of graduate students from a local university.
Journal Article

Extending the Range of Data-Based Empirical Models Used for Diesel Engine Calibration by Using Physics to Transform Feature Space

2019-03-14
Abstract A new method that allows data-enabled (empirical) models, commonly used for automotive engine calibration, to extrapolate beyond the range of training data has been developed. This method used a physics-based system-level one-dimensional model to improve interpolation and allow extrapolation for three data-based algorithms, by modifying the model input (feature) space. Neural network, regression, and k-nearest neighbor predictions of engine emissions and volumetric efficiency were greatly improved by generating 736,281 artificial feature spaces and then performing feature selection to choose feature spaces (feature selection) so that extrapolations in the original feature space were interpolations in the new feature space. A novel feature selection method was developed that used a two-stage search process to uniquely select the best feature spaces for every prediction.
Journal Article

Low- to High-Temperature Reaction Transition in a Small-Bore Optical Gasoline Compression Ignition (GCI) Engine

2019-08-19
Abstract This study shows the development of low-temperature and high-temperature reactions in a gasoline-fuelled compression ignition (GCI) engine realizing partially premixed combustion for high efficiency and low emissions. The focus is how the ignition occurs during the low- to high-temperature reaction transition and how it varies due to single- and double-injection strategies. In an optically accessible, single-cylinder small-bore diesel engine equipped with a common-rail fuel injection system, planar laser-induced fluorescence (PLIF) imaging of formaldehyde (HCHO-PLIF), hydroxyl (OH-PLIF), and fuel (fuel-PLIF) has been performed. This was complemented with high-speed imaging of combustion luminosity and chemiluminescence imaging of cool flame and OH*.
Journal Article

Experiments and Large-Eddy Simulation for a Flowbench Configuration of the Darmstadt Optical Engine Geometry

2020-07-08
Abstract The development and control of spark-ignition engines with increased efficiency and reduced engine-out emissions requires tools and methods capable of providing insight and eventually predicting Cycle-to-Cycle Variations (CCV). To this end, Large-Eddy Simulations (LES) can improve the understanding of stochastic in-cylinder phenomena during the engine design process. However, available LES methods are typically not able to reproduce the full extent of cyclic variability observed in experiments, and computational costs are higher compared to established simulation approaches. In this work, an engine flowbench configuration suitable for validation of LES methods and intake flow assessment is considered. To supplement an existing validation database, Particle Image Velocimetry (PIV) and wall pressure measurements have been conducted in a reference optical engine geometry, which is available through the Darmstadt Engine Workshop.
Journal Article

Thermomechanical Fracture Failure Analysis of a Heavy-Duty Diesel Engine Cylinder Liner through Performance Analysis and Finite Element Modeling

2020-10-02
Abstract Diesel engines include systems for cooling, lubrication, and fuel injection and contain a variety of components. A malfunction in any of the engine systems or the presence of any faulty element influences engine performance and deteriorates its components. This research is concerned with the untimely appearance of vital cracks in the liners of a turbocharged heavy-duty Diesel engine. To find the root causes for premature failure, rigorous examinations through visual observations, material characterization, and metallographic investigations are performed. These include Scanning Electron Microscope (SEM) and Energy-Dispersive Spectroscopy (EDS), fracture mechanics analysis, and performance examination, which are also followed by Finite Element Moldings. To find the proper remedy to resolve the problem, drawing a precise and reliable picture of the engine’s operating conditions is required.
Journal Article

The Placement of Digitized Objects in a Point Cloud as a Photogrammetric Technique

2018-08-08
Abstract The frequency of video-capturing collision events from surveillance systems are increasing in reconstruction analyses. The video that has been provided to the investigator may not always include a clear perspective of the relevant area of interest. For example, surveillance video of an incident may have captured a pre- or post-incident perspective that, while failing to capture the precise moment when the pedestrian was struck by a vehicle, still contains valuable information that can be used to assist in reconstructing the incident. When surveillance video is received, a quick and efficient technique to place the subject object or objects into a three-dimensional environment with a known rate of error would add value to the investigation.
Journal Article

Assessing the Safety of Environment Perception in Automated Driving Vehicles

2020-04-21
Abstract The development of automated driving systems (ADS) necessitates procedures to validate system safety. The reliability of an ADS’s environment perception provided by lidar, radar, and camera sensors is of special interest in this context, because perception errors can be safety-critical. In this article, we formalize the reliability-based validation of environment perception for safe automated driving and discuss associated challenges. We describe a potential solution to a perception reliability validation by deriving performance requirements at the sensor level. We then summarize statistical methods to learn sensor perception reliabilities in field tests, on proving grounds, and through virtual simulations. With the developed safety validation framework, we show that, potentially, one can validate the safety of an ADS with feasible test effort.
Journal Article

Pedestrian Detection Method Based on Roadside Light Detection and Ranging

2021-11-12
Abstract In recent years, to avoid the failure of the onboard perception system, intelligent vehicle infrastructure cooperative systems have been attracting attention in the field of autonomous vehicles. Using the perception technology of roadside sensors to provide supplementary traffic information for autonomous vehicles has become an increasing trend. Several roadside perception solutions select deep learning for three-dimensional (3D) object detection. However, deep learning methods have several issues and lack reliability in practical engineering applications. To tackle this challenge, this study proposes a pedestrian detection algorithm based on roadside Light Detection And Ranging (LiDAR) by combining traditional and deep learning algorithms. To meet real-time demand, Octree with region-of-interest (ROI) selection is introduced and improved to filter the background in each frame, which improves the clustering speed.
Journal Article

Finding Diverse Failure Scenarios in Autonomous Systems Using Adaptive Stress Testing

2019-12-18
Abstract Identifying and eliminating failure scenarios is critical in the development of autonomous vehicle (AV) systems. However, finding such failures through real-world vehicle-level testing is a difficult task as system disengagements and accidents are rare occurrences. Simulation approaches have been proposed to supplement vehicle-level testing and reduce the costs associated with operating large fleets of autonomous test vehicles. While one can run more vehicles in simulation than in the real world, applying traditional Monte Carlo sampling techniques to find failures still yields an unguided search and a large waste of computing resources. A more directed method than random sampling is needed to identify failure scenarios in a computationally efficient manner. Adaptive Stress Testing (AST) is a method that uses reinforcement learning (RL) paradigms to efficiently find failure scenarios in stochastic sequential decision-making systems.
Journal Article

Physics-Based Simulation Solutions for Testing Performance of Sensors and Perception Algorithm under Adverse Weather Conditions

2022-04-13
Abstract Weather conditions such as rain, fog, snow, and dust can adversely impact sensing and perception, limit operational envelopes, and compromise the safety and reliability of advanced driver-assistance systems and autonomous vehicles. Physical testing of an autonomous system in a weather laboratory and on-road is costly and slow and exposes the system to only a limited set of weather conditions. To overcome the limitations of physical testing, a physics-based simulation workflow was developed by coupling computational fluid dynamics (CFD) with optical simulations of camera and lidar sensors. The computational data of various weather conditions can be rapidly generated by CFD and used to assess the impact of weather conditions on the sensors and perception algorithms.
X