Refine Your Search

Topic

Search Results

Journal Article

Artificial Lightning Tests on Metal and CFRP Automotive Bodies: A Comparative Study

2019-01-07
Abstract Carbon fiber reinforced plastic (CFRP) has been used in automobiles as well as airplanes. Because of its light weight and high strength, CFRP is a good choice for making vehicle bodies lighter, which would improve fuel economy. Conventional metal bodies provide a convenient body return for electric wiring and offer good shielding against electromagnetic fields. Although CFRP is a conductor, its conductivity is much lower than that of metals. Therefore, CFRP bodies are usually not useful for electric wiring. In thunderstorms, an automotive body is considered to be a Faraday cage that protects the vehicle’s occupants from the potential harms of lightning. Before CFRP becomes widely applied to automotive bodies, its electric and electromagnetic properties need to be investigated in order to determine whether it also works as a Faraday cage against lightning. In this article, CFRP and metal body vehicles were tested under artificial lightning.
Journal Article

A Study of an Integrated HVAC-Vehicle Model for Automotive Vehicles

2018-04-18
Abstract The objective of this work is to develop an integrated HVAC-VEHICLE model for climate control studies. A published lumped parameter based HVAC model has been used as the framework for the HVAC modeling with some modifications to realize the climate control and to improve the robustness of the model. R134a (1,1,2,2-Tetrafluoroethane) has been used as the refrigerant fluid in this study. The stand-alone HVAC model has been compared qualitatively with the experimental works available in the literature. The experimental trends of the thermodynamic and performance related parameters of HVAC are reasonably well captured by the HVAC model. In particular, Coefficient of Performance (CoP) was found to decrease with increase in compressor speed and increase in ambient temperature but increase with increase in evaporator blower mass flow rate.
Journal Article

Study of Wedge-Actuated Continuously Variable Transmission

2021-08-23
Abstract The mechanical efficiency of the current continuously variable transmission (CVT) suffers from high pump loss induced by a high-pressure system. A novel wedge mechanism is designed into the CVT clamp actuation system to generate the majority of clamp force mechanically. Therefore, the hydraulic system can operate at a low-pressure level most of the time, and the pump loss is greatly reduced to improve the CVT’s mechanical efficiency. Through dynamic analysis and design optimization, 90% of clamp force is contributed by the wedge mechanism and the rest of the 10% is generated by a conventional hydraulic system. The optimal design is validated through dynamic modeling using Siemens Virtual.Lab software by simulating the wedge clamp force generation, ratio change dynamics, and system response under tip-in conditions. After that, we built prototype components that target 70% of the clamp force contributed by the wedge mechanism and tested them on a transmission dynamometer.
Journal Article

U.S. Light-Duty Vehicle Air Conditioning Fuel Use and Impact of Solar/Thermal Control Technologies

2018-12-11
Abstract To reduce fuel consumption and carbon dioxide (CO2) emissions from mobile air conditioning (A/C) systems, “U.S. Light-Duty Vehicle Greenhouse Gas Emissions and Corporate Average Fuel Economy Standards” identified solar/thermal technologies such as solar control glazings, solar reflective paint, and active and passive cabin ventilation in an off-cycle credit menu. National Renewable Energy Laboratory (NREL) researchers developed a sophisticated analysis process to calculate U.S. light-duty A/C fuel use that was used to assess the impact of these technologies, leveraging thermal and vehicle simulation analysis tools developed under previous U.S. Department of Energy projects. Representative U.S. light-duty driving behaviors and weighting factors including time-of-day of travel, trip duration, and time between trips were characterized and integrated into the analysis.
Journal Article

Crashworthiness Performance of Multi-Cornered Structures under Quasi-Static Compression and Dynamic Axial Loading Conditions

2020-08-11
Abstract With increased consumer demand for fuel efficient vehicles as well as more stringent greenhouse gas regulations and/or Corporate Average Fuel Economy (CAFE) standards from governments around the globe, the automotive industry, including the OEM (Original Equipment Manufacturers) and suppliers, is working diligently to innovate in all areas of vehicle design. In addition to improving aerodynamics, enhancing internal combustion engines and transmission technologies, and developing alternative fuel vehicles, mass reduction has been identified as an important strategy in future vehicle development. In this article, the development, analysis, and experiment of multi-cornered structures are presented. To achieve mass reduction, two non-traditional multi-cornered structures, with twelve- and sixteen-cornered cross-sections, were developed separately by using computer simulations.
Journal Article

Steady Aeroelastic Response Prediction and Validation for Automobile Hoods

2018-07-10
Abstract The pursuit of improved fuel economy through weight reduction, reduced manufacturing costs, and improved crash safety can result in increased compliance in automobile structures. However, with compliance comes an increased susceptibility to aerodynamic and vibratory loads. The hood in particular withstands considerable aerodynamic force at highway speeds, creating the potential for significant aeroelastic response that may adversely impact customer satisfaction and perception of vehicle quality. This work seeks an improved understanding in computational and experimental study of fluid-structure interactions between automobile hoods and the surrounding internal and external flow. Computational analysis was carried out using coupled CFD-FEM solvers with detailed models of the automobile topology and structural components. The experimental work consisted of wind tunnel tests using a full-scale production vehicle.
Journal Article

Ultraviolet-Initiated Curing of Natural Fiber-Reinforced Acrylated Epoxidized Soybean Oil Composites

2021-06-02
Abstract Sustainable practices are taking precedence across many industries, as evident from their shift towards the use of environmentally responsible materials, such as natural fiber-reinforced acrylated epoxidized soybean oil (NF-AESO). However, due to the lower reactivity of AESO, the curing reaction usually requires higher temperatures and longer curing time (e.g., 150°C for 6-12 h), thus making the entire process unsustainable. In this study, we demonstrate the potential power of photons towards manufacturing NF-AESO composites in a sustainable manner at room temperature (RT) within 10 min. Two photoinitiators, i.e., the 2,2-dimethoxy phenylacetophenone (DMPA) and 1-hydroxycyclohexyl phenyl ketone (HCPK), were evaluated and compared with the thermal initiator, i.e., tert-butyl perbenzoate (TBPB). Based on the mechanical performance of the AESOs, the photoinitiation system for NF-AESO was optimized.
Journal Article

Toward Improving Vehicle Fuel Economy with ADAS

2018-10-29
Abstract Modern vehicles have incorporated numerous safety-focused advanced driver-assistance systems (ADAS) in the last decade including smart cruise control and object avoidance. In this article, we aim to go beyond using ADAS for safety and propose to use ADAS technology to enable predictive optimal energy management and improve vehicle fuel economy (FE). We combine ADAS sensor data with a previously developed prediction model, dynamic programming (DP) optimal energy management control, and a validated model of a 2010 Toyota Prius to explore FE. First, a unique ADAS detection scope is defined based on optimal vehicle control prediction aspects demonstrated to be relevant from the literature. Next, during real-world city and highway drive cycles in Denver, Colorado, a camera is used to record video footage of the vehicle environment and define ADAS detection ground truth. Then, various ADAS algorithms are combined, modified, and compared to the ground truth results.
Journal Article

TOC

2020-10-07
Abstract TOC
Journal Article

Finite Element Thermo-Structural Methodology for Investigating Diesel Engine Pistons with Thermal Barrier Coating

2018-12-14
Abstract Traditionally, in combustion engine applications, metallic materials have been widely employed due to their properties: castability and machinability with accurate dimensional tolerances, good mechanical strength even at high temperatures, wear resistance, and affordable price. However, the high thermal conductivity of metallic materials is responsible for consistent losses of thermal energy and has a strong influence on pollutant emission. A possible approach for reducing the thermal exchange requires the use of thermal barrier coating (TBC) made by materials with low thermal conductivity and good thermo-mechanical strength. In this work, the effects of a ceramic coating for thermal insulation of the piston crown of a car diesel engine are investigated through a numerical methodology based on finite element analysis. The study is developed by considering firstly a thermal analysis and then a thermo-structural analysis of the component.
Journal Article

A Study of Low Temperature Plasma-Assisted Gasoline HCCI Combustion

2019-01-29
Abstract In this study low temperature plasma technology was applied to expand auto-ignition operation region and control auto-ignition phasing of the homogeneous charge compression ignition (HCCI) combustion. The low temperature plasma igniter of a barrier discharge model (barrier discharge igniter (BDI)) with high-frequency voltage (15 kHz) was provided at the top center of the combustion chamber, and the auto-ignition characteristics of the HCCI combustion by the low temperature plasma assistance was investigated by using a single-cylinder gasoline engine. HCCI combustion with compression ratio of 15:1 was achieved by increasing the intake air temperature. The lean air-fuel (A/F) ratio limit and visualized auto-ignition combustion process on baseline HCCI without discharge assistance, spark-assisted HCCI, and BDI-assisted HCCI were compared.
Journal Article

The Key Role of Advanced, Flexible Fuel Injection Systems to Match the Future CO2 Targets in an Ultra-Light Mid-Size Diesel Engine

2019-01-23
Abstract The article describes the results achieved in developing a new diesel combustion system for passenger car application that, while capable of high power density, delivers excellent fuel economy through a combination of mechanical and thermodynamic efficiencies improvement. The project stemmed from the idea that, by leveraging the high fuel injection pressure of last generation common rail systems, it is possible to reduce the engine peak firing pressure (pfp) with great benefits on reciprocating and rotating components’ light-weighting and friction for high-speed light-duty engines, while keeping the power density at competitive levels. To this aim, an advanced injection system concept capable of injection pressure greater than 2500 bar was coupled to a prototype engine featuring newly developed combustion system. Then, the matching among these features has been thoroughly experimentally examined.
Journal Article

A New Approach for Development of a High-Performance Intake Manifold for a Single-Cylinder Engine Used in Formula SAE Application

2019-07-26
Abstract The Formula SAE (FSAE) is an international engineering competition where a Formula style race car is designed and built by students from worldwide universities. According to FSAE regulation, an air restrictor with circular cross section of 20 mm for gasoline-fuelled and 19 mm for E-85-fuelled vehicles is to be incorporated between the throttle valve and engine inlet. The sole purpose of this regulation is to limit the airflow to the engine used. The only sequence allowed is throttle valve, restrictor and engine inlet. A new approach of combining ram theory and acoustic theory methods are investigated to increase the performance of the engine by designing an optimized intake runner for a particular engine speed range and an optimized plenum volume in this range. Engine performance characteristics such as brake power, brake torque and volumetric efficiency are taken into considerations.
Journal Article

Investigation of a Model-Based Approach to Estimating Soot Loading Amount in Catalyzed Diesel Particulate Filters

2019-08-26
Abstract In order to meet the worldwide increasingly stringent particulate matter (PM) and particulate number (PN) emission limits, the diesel particulate filter (DPF) is widely used today and has been considered to be an indispensable feature of modern diesel engines. To estimate the soot loading amount in the DPF accurately and in real-time is a key function of realizing systematic and efficient applications of diesel engines, as starting the thermal regeneration of DPF too early or too late will lead to either fuel economy penalty or system reliability issues. In this work, an open-loop and on-line approach to estimating the DPF soot loading on the basis of soot mass balance is developed and experimentally investigated, through establishing and combining prediction models of the NOx and soot emissions out of the engine and a model of the catalytic soot oxidation characteristics of passive regeneration in the DPF.
Journal Article

Effects of Water Injector Spray Angle and Injector Orientation on Emission and Performance of a GDI Engine—A CFD Analysis

2019-10-08
Abstract Higher water evaporation and proper water vapor distribution in the cylinder are very vital for improving emission and performance characteristics of water-injected engines. The concentration of water vapor should be higher and uniform near the walls of the combustion chamber and nil at the spark plug location. In direct water-injected engines, water evaporation, vapor distribution, and spray impingement are highly dependent on injector parameters, viz., water injector orientation (WIO), location, and spray angle. Therefore, in this article, a computational fluid dynamics (CFD) investigation is conducted to study the effects of water injector spray angle (WISA), and WIO on the water evaporation, emission, and performance characteristics of a four-stroke, wall-guided gasoline direct injection (GDI) engine. The WISA is varied from 10° to 35°, whereas the WIO is varied from 15° to 35° in steps of 5°.
Journal Article

A Method for Improvement in Data Quality of Heat Release Metrics Utilizing Dynamic Calculation of Cylinder Compression Ratio

2019-10-29
Abstract One of the key factors for accurate mass burn fraction and energy conversion point calculations is the accuracy of the compression ratio. The method presented in this article suggests a workflow that can be applied to determine or correct the compression ratio estimated geometrically or measured using liquid displacement. It is derived using the observation that, in a motored engine, the heat losses are symmetrical about a certain crank angle, which allows for the derivation of an expression for the clearance volume [1]. In this article, a workflow is implemented in real time, in a current production engine indicating system. The goal is to improve measurement data quality and stability for the energy conversion points calculated during measurement procedures. Experimental and simulation data is presented to highlight the benefits and improvement that can be achieved, especially at the start of combustion.
Journal Article

Engine Cylinder Head Thermal-Mechanical Fatigue Evaluation Technology and Platform Application

2019-10-14
Abstract An in-cylinder combustion analysis and a computational fluid dynamics (CFD) coolant flow analysis were performed using AVL FIRE software, which provided the heat transfer boundary conditions (HTBCs) to the temperature field calculation of the cylinder head. Based on the measured material performance parameters such as stress-strain curve under different temperatures and E-N curve, creep, and oxidation data material performance, the cylinder head-gasket-cylinder block finite element analysis (FEA) was performed. According to the temperature field calculation results, the maximum temperature of the cylinder head is 200°C that is within the limit of ALU material. The temperature of the water is more than 21.1°C below the critical burnout point temperature. The high-cycle fatigue (HCF) and thermal-mechanical fatigue (TMF) analysis of the cylinder head were performed by FEMFAT software.
Journal Article

1D Numerical and Experimental Investigations of an Ultralean Pre-Chamber Engine

2019-11-19
Abstract In recent years, lean-burn gasoline Spark-Ignition (SI) engines have been a major subject of investigations. With this solution, in fact, it is possible to simultaneously reduce NOx raw emissions and fuel consumption due to decreased heat losses, higher thermodynamic efficiency, and enhanced knock resistance. However, the real applicability of this technique is strongly limited by the increase in cyclic variation and the occurrence of misfire, which are typical for the combustion of homogeneous lean air/fuel mixtures. The employment of a Pre-Chamber (PC), in which the combustion begins before proceeding in the main combustion chamber, has already shown the capability of significantly extending the lean-burn limit. In this work, the potential of an ultralean PC SI engine for a decisive improvement of the thermal efficiency is presented by means of numerical and experimental analyses.
Journal Article

An Investigation of the Effects of the Piston Bowl Geometries of a Heavy-Duty Engine on Performance and Emissions Using Direct Dual Fuel Stratification Strategy, and Proposing Two New Piston Profiles

2020-03-16
Abstract Direct dual fuel stratification (DDFS) strategy benefits the advantages of the RCCI and PPC strategies simultaneously. DDFS has improved control over the heat release rate, by injecting a considerable amount of fuel near TDC, compared to RCCI. In addition, the third injection (near TDC) is diffusion-limited. Consequently, piston bowl geometry directly affects the formation of emissions. The modified piston geometry was developed and optimized for RCCI by previous scholars. Since all DDFS experimental tests were performed with the modified piston profile, the other piston profiles need to be investigated for this strategy. In this article, first, a comparative study between the three conventional piston profiles, including the modified, stock, and scaled pistons, was performed. Afterward, the gasoline injector position was shifted to the head cylinder center for the stock piston. NOX emissions were improved; however, soot was increased slightly.
Journal Article

Effects of Stepped-Lip Combustion System Design and Operating Parameters on Turbulent Flow Evolution in a Diesel Engine

2020-01-16
Abstract Interactions between fuel sprays and stepped-lip diesel piston bowls can produce turbulent flow structures that improve efficiency and emissions, but the underlying mechanisms are not well understood. Recent experimental and simulation efforts provide evidence that increased efficiency and reduced smoke emissions coincide with the formation of long-lived, energetic vortices during the mixing-controlled portion of the combustion event. These vortices are believed to promote fuel-air mixing, increase heat-release rates, and improve air utilization, but they become weaker as main injection timing is advanced nearer to the top dead center (TDC). Further efficiency and emissions benefits may be realized if vortex formation can be strengthened for near-TDC injections. This work presents a simulation-based analysis of turbulent flow evolution within a stepped-lip combustion chamber.
X